Budeme pracovat se dvěma datovými soubory:
Nejprve naimportujeme knihovnu pandas
a zkusíme si s ní trochu hrát.
import pandas
Načtení souboru ve formátu CSV uděláme pomocí funkce read_csv
. První argument udává jméno souboru. Další argumenty jsou:
index_col
: Název sloupce, pomocí kterého chceme data indexovat. Pokud nic nezadáme, Pandas vytvoří nový sloupec s čísly.parse_dates
: Tímto dané sloupce načteme jako data místo řetězců. Pozorný čtenář se všimne, že ve výpisu je sloupců s daty víc, ale my budeme potřebovat pouze tento jeden a na ostatních nám až tak moc nezáleží.dayfirst
: Pandas zkouší uhodnout, v jakém formátu jsou data zadaná. Den a měsíc je ale problematické rozlišit, takže tímto řekneme, že nejdříve je v datu den, až potom měsíc.data = pandas.read_csv("2016-zavady_vo-1.csv", index_col="Číslo závady",
parse_dates=["Datum nahlášení závady"],
dayfirst=True)
data
Můžeme si nechat data popsat:
data.describe()
Nebo si taky můžeme nechat vykreslit graf. Osa x je daná indexem, na ose y je vybraný sloupec. Datum je v našich datech jediný sloupec, kde dává trochu smysl vykreslovat graf.
data["Datum nahlášení závady"].plot()
Můžeme si taky vybrat jenom určitou podmnožinu dat. Třeba prvních pět řádků.
data[:5]
Nebo jenom jeden sloupec z prvních pěti řádků:
data["Katastr"][:5]
Můžeme vybrat několik sloupců:
data[["Ulice", "Katastr"]]
Základní analýza pro sloupce s řetězci může mýt spočítání četností: kolikrát se která hodnota ve sloupci objevuje. Zjistíme 10 ulic s nejvíce poruchami:
data["Ulice"].value_counts()[:10]
Tato data můžeme zase vykreslit do grafu. Výchozí čárový graf tady není vhodný, proto radši použijeme sloupcový graf (v horizontální variantě).
data["Ulice"].value_counts()[:10].plot(kind="barh", figsize=(15,8))
Podmnožinu dat můžeme vybrat stejným způsobem jako v numpy pomocí pravdivostního výrazu. Nejpreve najdeme všechny řádky, které mají daný typ poruchy, a potom si vybereme pouze tyto řádky.
blikajici = data[ data["Typ závady"] == "S svítidlo-bliká" ]
blikajici
Na této podmnožině můžeme zase spočítat četnosti:
pocty_blikajicich = blikajici["Katastr"].value_counts()
pocty_blikajicich
Co třeba zkusit zjistit, ve kterém katastru je nejvíce hlášených blikajících světel v poměru k ostatním poruchám?
celkove_pocty = data["Katastr"].value_counts()
pomery = pocty_blikajicich / celkove_pocty
pomery = pomery.dropna().sort_values(ascending=False)
pomery
Tato data opět můžeme dostat do grafu:
pomery.plot(kind="bar", figsize=(15,5))
Můžeme zkusit zjistit, jestli je nějaký den, kdy je hlášeno více poruch než v jiné dny. Pro jednoduchost se omezíme na jeden katastr.
Začneme výběrem podmnožiny dat.
slatina = data[data["Katastr"] == "Slatina"]
slatina = slatina[["Katastr", "Ulice", "Datum nahlášení závady"]]
slatina
Na začátku jsme si nastavili index na číslo poruchy. Pro tuto analýzu ale bude praktičtější indexovat pomocí data nahlášení poruchy. Index můžeme změnít, takže to můžeme napravit bez nového načítání dat. Nejprve se ale podívejme, jak vypadá index teď.
slatina.index
Nastavíme nový index a podíváme se na data:
slatina_podle_data = slatina.set_index("Datum nahlášení závady")
slatina_podle_data[:5]
I na index samotný.
slatina_podle_data.index
Pokud je indexem datum, můžeme s ním pracovat a podívat se třeba jenom na den v měsíci:
slatina_podle_data.index.day
Nebo na den v týdnu. Překvapivě 0 znamená pondělí:
slatina_podle_data.index.weekday
Takto získaný den v týdnu si můžeme přidat do datového rámce:
slatina_podle_data.loc[:, "den v týdnu"] = slatina_podle_data.index.weekday
slatina_podle_data[:5]
Pomocí metody groupby
můžeme data shlukovat podle hodnot určitého sloupce. Tato metoda vrací objekt reprezentující několik shluků. Nás primárně zajímá, kolik je v každé skupině položek (tedy kolik poruch bylo hlášeno v ten který den).
Další možnosti agregování skupin jsou třeba sum
nebo mean
. Většina ale dává smysl hlavně pro číselné sloupce.
pocty_podle_dne = slatina_podle_data.groupby("den v týdnu").aggregate("size")
pocty_podle_dne
Pro snažší čtení by bylo lepší zobrazovat jména dní místo čísel. Můžeme si nastavit nový index čistě pomocí seznamu hodnot:
pocty_podle_dne.index = ["Po", "Út", "St", "Čt", "Pá", "So", "Ne"]
pocty_podle_dne
A nakonec vykreslíme graf:
pocty_podle_dne.plot(kind="bar")
Pro vykreslování map existuje mnoho různých knihoven. Tady si ukážeme geopandas
, která má poměrně hezké rozhraní. Její velkou nevýhodou je komplikovaná instalace na Windows.
Nejprve si knohovnu naimportujeme, potom načteme soubor s daty a vybereme pouze Brno.
Dostaneme datový rámec jako v Pandas. Několik posledních sloupců ale obsahuje zajímavé hodnoty. Kromě souřadnic tam najdeme geometry
: definici tvaru nějaké oblasti v mapě.
import geopandas
mapa = geopandas.read_file("Městské_obvody_a_městské_části__polygony.shp", encoding="utf-8")
brno = mapa[mapa["NAZ_OBEC"] == "Brno"].copy()
brno.head()
Zkusíme si nakreslit mapu všech brněnských částí:
from matplotlib import pyplot
brno.plot(figsize=(10,10))
To by asi mohlo být Brno. Kdybychom ale měli popisky pro jednotlivé oblasti, možná by to bylo přehlednější. Můžeme si je přidat. Nejprve ale potřebujeme vědět, kam popisek nakreslit. Můžeme si pro každou oblast spočítat vhodný bod, a přidat ho do dat.
brno["coords"] = brno["geometry"].apply(lambda x: x.representative_point().coords[:])
brno["coords"] = [coords[0] for coords in brno["coords"]]
Teď můžeme vykreslit mapu jako předtím, a potom pro každou oblast přidat anotaci:
brno.plot(figsize=(10,10))
for idx, radek in brno.iterrows():
pyplot.annotate(s=radek["NAZ_MOaMC"], xy=radek["coords"], horizontalalignment="center")
Jako poslední příklad si do mapy zkusíme znázornit, kolik v dané oblasti je hlášeno poruch veřejného osvětlení. Na to budeme muset spočítat, kolik ji vlastně je, a přidat data do rámce s mapovými informace.
Spojování datových rámců je možné jako po řádcích, tak po sloupcích. Pokud chceme spojovat po sloupcích, potřebujeme index, podle kterého se dají poznat stejné řádky. Nastavíme si proto index na název městské části.
brno = brno.set_index("NAZ_MOaMC", drop=False)
brno.head()
Počet poruch v různých katastrech už máme spočítaný. Potřebujeme ale data trochu zpracovat, aby si odpovídaly názvy částí. Bohužel ne každý katastr patří do jediné městské části, takže tady dojde k určitým nepřesnostem.
poruchy = dict(celkove_pocty)
poruchy["Řečkovice a Mokrá Hora"] = poruchy.pop("Řečkovice") + poruchy.pop("Mokrá Hora")
poruchy["Maloměřice a Obřany"] = poruchy.pop("Maloměřice") + poruchy.pop("Obřany")
poruchy["Ivanovice"] = poruchy.pop("Brněnské Ivanovice")
poruchy["střed"] = poruchy.pop("Město Brno") + poruchy.pop("Staré Brno") + poruchy.pop("Štýřice") + poruchy.pop("Veveří") + poruchy.pop("Pisárky") + poruchy.pop("Stránice")
poruchy["Útěchov"] = poruchy.pop("Útěchov u Brna")
poruchy["sever"] = poruchy.pop("Soběšice") + poruchy.pop("Lesná") + poruchy.pop("Husovice") + poruchy.pop("Černá Pole") + poruchy.pop("Zábrdovice")
poruchy["jih"] = poruchy.pop("Dolní Heršpice") + poruchy.pop("Horní Heršpice") + poruchy.pop("Komárov") + poruchy.pop("Přízřenice") + poruchy.pop("Trnitá")
poruchy["Královo Pole"] += poruchy.pop("Ponava") + poruchy.pop("Sadová")
poruchy["Tuřany"] += poruchy.pop("Dvorska") + poruchy.pop("Holásky")
poruchy = [(f"Brno-{k}", v) for k, v in poruchy.items()]
poruchy_df = pandas.DataFrame.from_records(poruchy, columns=["NAZ", "pocet"], index="NAZ")
poruchy_df
Tento nový rámec teď můžeme spojit s mapovými podklady. Výchozí spojování je po řádcích, proto musíme určit osu.
brno_s_poruchami = pandas.concat([brno, poruchy_df], sort=False, axis=1)
brno_s_poruchami
Nakonec můžeme vykreslit graf, ve kterém budeme definovat barvy pomocí hodnot ve sloupci pocet
. Taky si přidáme legendu.
from matplotlib import pyplot
brno_s_poruchami.plot(figsize=(10,10), column="pocet", legend=True)
for idx, radek in brno_s_poruchami.iterrows():
pyplot.annotate(s=radek["NAZ_MOaMC"], xy=radek["coords"], horizontalalignment="center")
{ "data": { "sessionMaterial": { "id": "session-material:2019/brno-jaro-knihovny:pandas:1", "title": "Pandas a poruchy veÅ™ejného osvÄ›tlenà v BrnÄ›", "html": "\n \n \n\n <div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Budeme pracovat se dvěma datovými soubory:</p>\n<ul>\n<li>evidence poruch veřejného osvětlení v Brně z <a href=\"https://data.brno.cz/en/dataset/?id=zavady-vo\">https://data.brno.cz/en/dataset/?id=zavady-vo</a>. Data jsou ve formátu XLSX, který si převedeme do CSV pomocí libolného tabulkového procesoru.</li>\n<li>Seznam městských částí a obvodů z <a href=\"http://arccr-arcdata.opendata.arcgis.com/datasets/34ee5c20c3b54e6b82fd111d01905843_7\">http://arccr-arcdata.opendata.arcgis.com/datasets/34ee5c20c3b54e6b82fd111d01905843_7</a> ve formátu Shapefile.</li>\n</ul>\n<p>Nejprve naimportujeme knihovnu <code>pandas</code> a zkusíme si s ní trochu hrát.</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [1]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"kn\">import</span> <span class=\"nn\">pandas</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Načtení souboru ve formátu CSV uděláme pomocí funkce <code>read_csv</code>. První argument udává jméno souboru. Další argumenty jsou:</p>\n<ul>\n<li><code>index_col</code>: Název sloupce, pomocí kterého chceme data indexovat. Pokud nic nezadáme, Pandas vytvoří nový sloupec s čísly.</li>\n<li><code>parse_dates</code>: Tímto dané sloupce načteme jako data místo řetězců. Pozorný čtenář se všimne, že ve výpisu je sloupců s daty víc, ale my budeme potřebovat pouze tento jeden a na ostatních nám až tak moc nezáleží.</li>\n<li><code>dayfirst</code>: Pandas zkouší uhodnout, v jakém formátu jsou data zadaná. Den a měsíc je ale problematické rozlišit, takže tímto řekneme, že nejdříve je v datu den, až potom měsíc.</li>\n</ul>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [4]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">data</span> <span class=\"o\">=</span> <span class=\"n\">pandas</span><span class=\"o\">.</span><span class=\"n\">read_csv</span><span class=\"p\">(</span><span class=\"s2\">"2016-zavady_vo-1.csv"</span><span class=\"p\">,</span> <span class=\"n\">index_col</span><span class=\"o\">=</span><span class=\"s2\">"Číslo závady"</span><span class=\"p\">,</span>\n <span class=\"n\">parse_dates</span><span class=\"o\">=</span><span class=\"p\">[</span><span class=\"s2\">"Datum nahlášení závady"</span><span class=\"p\">],</span>\n <span class=\"n\">dayfirst</span><span class=\"o\">=</span><span class=\"kc\">True</span><span class=\"p\">)</span>\n<span class=\"n\">data</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[4]:</div>\n\n\n\n<div class=\"output_html rendered_html output_subarea output_execute_result\">\n<div>\n<style>.lesson-content .dataframe tbody tr th:only-of-type {\n vertical-align: middle\n }\n.lesson-content .dataframe tbody tr th {\n vertical-align: top\n }\n.lesson-content .dataframe thead th {\n text-align: right\n }</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>EC_SVE</th>\n <th>EČ objektu</th>\n <th>Katastr</th>\n <th>Ulice</th>\n <th>Sektor závady</th>\n <th>Rok závady</th>\n <th>Datum nahlášení závady</th>\n <th>Typ závady</th>\n <th>Plánovaný termín opravy</th>\n <th>Stav opravy</th>\n <th>Způsob opravy</th>\n <th>Datum opravy</th>\n </tr>\n <tr>\n <th>Číslo závady</th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>1</th>\n <td>S-1148-011</td>\n <td>Z-500</td>\n <td>Řečkovice</td>\n <td>TEREZY NOVÁKOVÉ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-01</td>\n <td>Z vypadený jistící prvek</td>\n <td>8.1.2016</td>\n <td>Definitivní</td>\n <td>vypadený jistící prvek</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>2</th>\n <td>S-1148-012</td>\n <td>NaN</td>\n <td>Řečkovice</td>\n <td>TEREZY NOVÁKOVÉ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-01</td>\n <td>S svítidlo-nesvítí</td>\n <td>8.1.2016</td>\n <td>Definitivní</td>\n <td>neopraveno</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>3</th>\n <td>S-1456-012</td>\n <td>NaN</td>\n <td>Zábrdovice</td>\n <td>ŠPITÁLKA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-02</td>\n <td>S svítidlo-bliká</td>\n <td>9.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>4</th>\n <td>S-1256-217</td>\n <td>NaN</td>\n <td>Komín</td>\n <td>VESLAŘSKÁ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-02</td>\n <td>S svítidlo-nesvítí</td>\n <td>9.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>5</th>\n <td>S-0478-003</td>\n <td>Z-612</td>\n <td>Staré Brno</td>\n <td>KOPEČNÁ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-02</td>\n <td>Z vypadený jistící prvek</td>\n <td>9.1.2016</td>\n <td>Definitivní</td>\n <td>vypadený jistící prvek</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>6</th>\n <td>S-0703-001</td>\n <td>R-0703-002</td>\n <td>Starý Lískovec</td>\n <td>MÁCHALOVA</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-02</td>\n <td>S svítidlo-nesvítí</td>\n <td>9.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>7</th>\n <td>S-1257-019</td>\n <td>Z-547</td>\n <td>Veveří</td>\n <td>VEVEŘÍ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-02</td>\n <td>SO nekomunikuje čip</td>\n <td>9.1.2016</td>\n <td>Definitivní</td>\n <td>při kontrole vše v pořádku</td>\n <td>3.1.2016</td>\n </tr>\n <tr>\n <th>8</th>\n <td>S-0687-129</td>\n <td>NaN</td>\n <td>Město Brno</td>\n <td>MORAVSKÉ NÁMĚSTÍ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-02</td>\n <td>S svítidlo-nesvítí</td>\n <td>9.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>9</th>\n <td>S-1202-005</td>\n <td>Z-518</td>\n <td>Bosonohy</td>\n <td>U SMYČKY</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-02</td>\n <td>Z vypadený jistící prvek</td>\n <td>9.1.2016</td>\n <td>Definitivní</td>\n <td>vypadený jistící prvek</td>\n <td>2.1.2016</td>\n </tr>\n <tr>\n <th>10</th>\n <td>S-0305-013</td>\n <td>NaN</td>\n <td>Bosonohy</td>\n <td>HOŠTICKÁ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-02</td>\n <td>S stožár-poškozen</td>\n <td>9.1.2016</td>\n <td>Definitivní</td>\n <td>není v majetku TsB</td>\n <td>2.1.2016</td>\n </tr>\n <tr>\n <th>11</th>\n <td>S-0942-016</td>\n <td>Z-425</td>\n <td>Ivanovice</td>\n <td>PŘÍJEZDOVÁ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-02</td>\n <td>Z vybitá PLC baterie</td>\n <td>9.1.2016</td>\n <td>Definitivní</td>\n <td>Z výměna baterie</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>12</th>\n <td>S-1485-038</td>\n <td>Z-531</td>\n <td>Stránice</td>\n <td>ÚVOZ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-03</td>\n <td>SO nekomunikuje čip</td>\n <td>10.1.2016</td>\n <td>Definitivní</td>\n <td>jiná závada</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>13</th>\n <td>S-1179-133</td>\n <td>Z-627</td>\n <td>Slatina</td>\n <td>TUŘANKA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-03</td>\n <td>Z vybitá PLC baterie</td>\n <td>10.1.2016</td>\n <td>Definitivní</td>\n <td>Z výměna baterie</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>14</th>\n <td>S-1269-049</td>\n <td>NaN</td>\n <td>Slatina</td>\n <td>VLNITÁ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-03</td>\n <td>S svítidlo-bliká</td>\n <td>10.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>15</th>\n <td>S-0375-191</td>\n <td>Z-186</td>\n <td>Nový Lískovec</td>\n <td>JIHLAVSKÁ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-03</td>\n <td>Z vypnuta regulace, viz.poznámka</td>\n <td>10.1.2016</td>\n <td>Definitivní</td>\n <td>jiná závada</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>16</th>\n <td>S-1360-009</td>\n <td>NaN</td>\n <td>Maloměřice</td>\n <td>ZIMNÍ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-03</td>\n <td>S svítidlo-bliká</td>\n <td>10.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>17</th>\n <td>S-1360-008</td>\n <td>NaN</td>\n <td>Maloměřice</td>\n <td>ZIMNÍ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-03</td>\n <td>S svítidlo-bliká</td>\n <td>10.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>18</th>\n <td>S-1204-034</td>\n <td>NaN</td>\n <td>Kohoutovice</td>\n <td>U VELKÉ CENY</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-03</td>\n <td>S svítidlo-bliká</td>\n <td>10.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>19</th>\n <td>S-0652-077</td>\n <td>NaN</td>\n <td>Staré Brno</td>\n <td>MENDLOVO NÁMĚSTÍ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-03</td>\n <td>S svítidlo-nesvítí</td>\n <td>10.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>20</th>\n <td>S-0455-038</td>\n <td>Z-619</td>\n <td>Královo Pole</td>\n <td>KOCIÁNKA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-04</td>\n <td>Z vypadený jistící prvek</td>\n <td>11.1.2016</td>\n <td>Definitivní</td>\n <td>vypadený jistící prvek</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>21</th>\n <td>S-0527-003</td>\n <td>Z-236</td>\n <td>Žabovřesky</td>\n <td>KRÁLOVA</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-04</td>\n <td>Z vybitá PLC baterie</td>\n <td>11.1.2016</td>\n <td>Definitivní</td>\n <td>Z výměna baterie</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>22</th>\n <td>S-0808-035</td>\n <td>Z-357</td>\n <td>Židenice</td>\n <td>OTAKARA ŠEVČÍKA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-04</td>\n <td>viz. poznámka</td>\n <td>11.1.2016</td>\n <td>Definitivní</td>\n <td>jiná závada</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>23</th>\n <td>S-0526-036</td>\n <td>Z-035</td>\n <td>Starý Lískovec</td>\n <td>KRYMSKÁ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-04</td>\n <td>viz. poznámka</td>\n <td>11.1.2016</td>\n <td>Definitivní</td>\n <td>při kontrole vše v pořádku</td>\n <td>5.1.2016</td>\n </tr>\n <tr>\n <th>24</th>\n <td>S-1354-003</td>\n <td>NaN</td>\n <td>Žabovřesky</td>\n <td>ZEMKOVA</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-04</td>\n <td>S svítidlo-nesvítí</td>\n <td>11.1.2016</td>\n <td>Definitivní</td>\n <td>vypadený jistící prvek</td>\n <td>5.1.2016</td>\n </tr>\n <tr>\n <th>25</th>\n <td>S-1259-003</td>\n <td>NaN</td>\n <td>Židenice</td>\n <td>VINAŘICKÉHO</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-04</td>\n <td>S svítidlo-bliká</td>\n <td>11.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>5.1.2016</td>\n </tr>\n <tr>\n <th>26</th>\n <td>S-0831-019</td>\n <td>NaN</td>\n <td>Staré Brno</td>\n <td>PELLICOVA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-04</td>\n <td>S svítidlo-nesvítí</td>\n <td>11.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>5.1.2016</td>\n </tr>\n <tr>\n <th>27</th>\n <td>S-0421-007</td>\n <td>R-0421-002</td>\n <td>Stránice</td>\n <td>KAMPELÍKOVA</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-04</td>\n <td>S svítidlo-nesvítí</td>\n <td>11.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>5.1.2016</td>\n </tr>\n <tr>\n <th>28</th>\n <td>S-0808-034</td>\n <td>Z-357</td>\n <td>Židenice</td>\n <td>OTAKARA ŠEVČÍKA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-04</td>\n <td>Z vypnuta regulace, viz.poznámka</td>\n <td>11.1.2016</td>\n <td>Definitivní</td>\n <td>Z regulace seřízena</td>\n <td>5.1.2016</td>\n </tr>\n <tr>\n <th>29</th>\n <td>S-0579-005</td>\n <td>Z-261</td>\n <td>Stránice</td>\n <td>LERCHOVA</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-04</td>\n <td>Z vybitá PLC baterie</td>\n <td>11.1.2016</td>\n <td>Definitivní</td>\n <td>Z výměna baterie</td>\n <td>6.1.2016</td>\n </tr>\n <tr>\n <th>30</th>\n <td>S-1187-017</td>\n <td>R-1187-002</td>\n <td>Veveří</td>\n <td>TŮMOVA</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-04</td>\n <td>S svítidlo-nesvítí</td>\n <td>11.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>5.1.2016</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>2 641</th>\n <td>S-1070-036</td>\n <td>R-1070-007</td>\n <td>Lesná</td>\n <td>SOBĚŠICKÁ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-27</td>\n <td>R poškozen</td>\n <td>3.1.2017</td>\n <td>Provizorní</td>\n <td>vandalizmus</td>\n <td>27.12.2016</td>\n </tr>\n <tr>\n <th>2 642</th>\n <td>S-0560-054</td>\n <td>NaN</td>\n <td>Trnitá</td>\n <td>KŘENOVÁ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-27</td>\n <td>S svítidlo-bliká</td>\n <td>3.1.2017</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>3.1.2017</td>\n </tr>\n <tr>\n <th>2 643</th>\n <td>S-0271-001</td>\n <td>R-0271-001</td>\n <td>Černá Pole</td>\n <td>HELFERTOVA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-27</td>\n <td>R poškozen</td>\n <td>3.1.2017</td>\n <td>Provizorní</td>\n <td>R oprava RS</td>\n <td>27.12.2016</td>\n </tr>\n <tr>\n <th>2 644</th>\n <td>S-0770-067</td>\n <td>R-0770-008</td>\n <td>Černá Pole</td>\n <td>NÁM. SNP</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-27</td>\n <td>R poškozen</td>\n <td>3.1.2017</td>\n <td>Provizorní</td>\n <td>vandalizmus</td>\n <td>28.12.2016</td>\n </tr>\n <tr>\n <th>2 645</th>\n <td>S-0066-001</td>\n <td>Z-034</td>\n <td>Řečkovice</td>\n <td>BOSKOVICKÁ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-27</td>\n <td>Z vypadený jistící prvek</td>\n <td>3.1.2017</td>\n <td>Definitivní</td>\n <td>vypadený jistící prvek</td>\n <td>27.12.2016</td>\n </tr>\n <tr>\n <th>2 646</th>\n <td>S-0956-008</td>\n <td>Z-428</td>\n <td>Bystrc</td>\n <td>RAKOVECKÁ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-27</td>\n <td>Z vypadený jistící prvek</td>\n <td>3.1.2017</td>\n <td>Definitivní</td>\n <td>oprava volného vedení</td>\n <td>28.12.2016</td>\n </tr>\n <tr>\n <th>2 647</th>\n <td>S-1438-009</td>\n <td>Z-480</td>\n <td>Bosonohy</td>\n <td>ŠEVČENKOVA</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-27</td>\n <td>Z vypadený jistící prvek</td>\n <td>3.1.2017</td>\n <td>Definitivní</td>\n <td>oprava volného vedení</td>\n <td>28.12.2016</td>\n </tr>\n <tr>\n <th>2 648</th>\n <td>S-1202-006</td>\n <td>Z-518</td>\n <td>Bosonohy</td>\n <td>U SMYČKY</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-27</td>\n <td>Z vypadený jistící prvek</td>\n <td>3.1.2017</td>\n <td>Definitivní</td>\n <td>oprava volného vedení</td>\n <td>28.12.2016</td>\n </tr>\n <tr>\n <th>2 649</th>\n <td>S-1343-035</td>\n <td>NaN</td>\n <td>Dvorska</td>\n <td>ZAPLETALOVA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-28</td>\n <td>viz. poznámka</td>\n <td>4.1.2017</td>\n <td>Definitivní</td>\n <td>jiná závada</td>\n <td>28.12.2016</td>\n </tr>\n <tr>\n <th>2 650</th>\n <td>S-0175-001</td>\n <td>NaN</td>\n <td>Husovice</td>\n <td>DUKELSKÁ TŘÍDA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-28</td>\n <td>viz. poznámka</td>\n <td>4.1.2017</td>\n <td>Definitivní</td>\n <td>havárie</td>\n <td>28.12.2016</td>\n </tr>\n <tr>\n <th>2 651</th>\n <td>S-0066-001</td>\n <td>Z-034</td>\n <td>Řečkovice</td>\n <td>BOSKOVICKÁ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-28</td>\n <td>Z vypadený jistící prvek</td>\n <td>4.1.2017</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>29.12.2016</td>\n </tr>\n <tr>\n <th>2 652</th>\n <td>S-1496-022</td>\n <td>Z-075</td>\n <td>Bohunice</td>\n <td>DLOUHÁ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-28</td>\n <td>Z vypnuta regulace, viz.poznámka</td>\n <td>4.1.2017</td>\n <td>Definitivní</td>\n <td>Z regulace zapnuta</td>\n <td>29.12.2016</td>\n </tr>\n <tr>\n <th>2 653</th>\n <td>S-0802-007</td>\n <td>Z-347</td>\n <td>Město Brno</td>\n <td>ORLÍ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-28</td>\n <td>Z vybitá PLC baterie</td>\n <td>4.1.2017</td>\n <td>Definitivní</td>\n <td>Z výměna baterie</td>\n <td>29.12.2016</td>\n </tr>\n <tr>\n <th>2 654</th>\n <td>S-1000-019</td>\n <td>Z-513</td>\n <td>Medlánky</td>\n <td>RYSOVA</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-29</td>\n <td>Z vybitá PLC baterie</td>\n <td>5.1.2017</td>\n <td>Definitivní</td>\n <td>Z výměna baterie</td>\n <td>29.12.2016</td>\n </tr>\n <tr>\n <th>2 655</th>\n <td>S-0169-060</td>\n <td>Z-082</td>\n <td>Černá Pole</td>\n <td>DROBNÉHO</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-29</td>\n <td>Z vybitá PLC baterie</td>\n <td>5.1.2017</td>\n <td>Definitivní</td>\n <td>Z výměna baterie</td>\n <td>30.12.2016</td>\n </tr>\n <tr>\n <th>2 656</th>\n <td>S-1225-009</td>\n <td>Z-533</td>\n <td>Bohunice</td>\n <td>UZBECKÁ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-29</td>\n <td>Z vybitá záložní baterie</td>\n <td>5.1.2017</td>\n <td>Definitivní</td>\n <td>Z výměna baterie</td>\n <td>2.1.2017</td>\n </tr>\n <tr>\n <th>2 657</th>\n <td>S-1098-022</td>\n <td>NaN</td>\n <td>Židenice</td>\n <td>STARÁ OSADA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-29</td>\n <td>S svítidlo-nesvítí</td>\n <td>5.1.2017</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>5.1.2017</td>\n </tr>\n <tr>\n <th>2 658</th>\n <td>S-1269-013</td>\n <td>NaN</td>\n <td>Slatina</td>\n <td>VLNITÁ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-29</td>\n <td>S svítidlo-nesvítí</td>\n <td>5.1.2017</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>2.1.2017</td>\n </tr>\n <tr>\n <th>2 659</th>\n <td>S-0375-135</td>\n <td>Z-187</td>\n <td>Bohunice</td>\n <td>JIHLAVSKÁ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-29</td>\n <td>Z vypnuta regulace, viz.poznámka</td>\n <td>5.1.2017</td>\n <td>Definitivní</td>\n <td>při kontrole vše v pořádku</td>\n <td>6.1.2017</td>\n </tr>\n <tr>\n <th>2 660</th>\n <td>S-0345-005</td>\n <td>NaN</td>\n <td>Město Brno</td>\n <td>JAKUBSKÉ NÁMĚSTÍ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-29</td>\n <td>S svítidlo-nesvítí</td>\n <td>5.1.2017</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>14.1.2017</td>\n </tr>\n <tr>\n <th>2 661</th>\n <td>S-1352-022</td>\n <td>NaN</td>\n <td>Město Brno</td>\n <td>ZELNÝ TRH</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-29</td>\n <td>S svítidlo-nesvítí</td>\n <td>5.1.2017</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2017</td>\n </tr>\n <tr>\n <th>2 662</th>\n <td>S-0265-006</td>\n <td>Z-628</td>\n <td>Černovice</td>\n <td>HAVRANÍ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-30</td>\n <td>Z vybitá PLC baterie</td>\n <td>6.1.2017</td>\n <td>Definitivní</td>\n <td>Z výměna baterie</td>\n <td>2.1.2017</td>\n </tr>\n <tr>\n <th>2 663</th>\n <td>S-1092-002</td>\n <td>Z-459</td>\n <td>Královo Pole</td>\n <td>SRBSKÁ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-30</td>\n <td>Z vybitá PLC baterie</td>\n <td>6.1.2017</td>\n <td>Definitivní</td>\n <td>Z výměna baterie</td>\n <td>2.1.2017</td>\n </tr>\n <tr>\n <th>2 664</th>\n <td>S-0786-017</td>\n <td>NaN</td>\n <td>Bohunice</td>\n <td>OKROUHLÁ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-30</td>\n <td>S patice-poškozena, chybí</td>\n <td>6.1.2017</td>\n <td>Definitivní</td>\n <td>S montáž patice</td>\n <td>3.1.2017</td>\n </tr>\n <tr>\n <th>2 665</th>\n <td>S-0476-005</td>\n <td>R-0476-002</td>\n <td>Líšeň</td>\n <td>KONRADOVA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-30</td>\n <td>R poškozen</td>\n <td>6.1.2017</td>\n <td>Provizorní</td>\n <td>provizorní zajištění živých částí</td>\n <td>5.1.2017</td>\n </tr>\n <tr>\n <th>2 666</th>\n <td>S-1549-083</td>\n <td>NaN</td>\n <td>Bystrc</td>\n <td>OBVODOVÁ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-30</td>\n <td>S svítidlo-nesvítí</td>\n <td>6.1.2017</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>2.1.2017</td>\n </tr>\n <tr>\n <th>2 667</th>\n <td>S-1339-004</td>\n <td>R-1339-001</td>\n <td>Líšeň</td>\n <td>ZAHRADNÍ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-30</td>\n <td>S svítidlo-bliká</td>\n <td>6.1.2017</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>3.1.2017</td>\n </tr>\n <tr>\n <th>2 668</th>\n <td>S-0530-010</td>\n <td>NaN</td>\n <td>Židenice</td>\n <td>KRÁSNÉHO</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-30</td>\n <td>S svítidlo-bliká</td>\n <td>6.1.2017</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2017</td>\n </tr>\n <tr>\n <th>2 669</th>\n <td>S-0880-020</td>\n <td>NaN</td>\n <td>Líšeň</td>\n <td>POHANKOVA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-31</td>\n <td>S svítidlo-nesvítí</td>\n <td>7.1.2017</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>3.1.2017</td>\n </tr>\n <tr>\n <th>2 670</th>\n <td>S-1180-001</td>\n <td>NaN</td>\n <td>Tuřany</td>\n <td>TUŘANSKÉ NÁMĚSTÍ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-31</td>\n <td>S svítidlo-nesvítí</td>\n <td>7.1.2017</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2017</td>\n </tr>\n </tbody>\n</table>\n<p>2669 rows × 12 columns</p>\n</div>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Můžeme si nechat data popsat:</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [12]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">data</span><span class=\"o\">.</span><span class=\"n\">describe</span><span class=\"p\">()</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[12]:</div>\n\n\n\n<div class=\"output_html rendered_html output_subarea output_execute_result\">\n<div>\n<style>.lesson-content .dataframe tbody tr th:only-of-type {\n vertical-align: middle\n }\n.lesson-content .dataframe tbody tr th {\n vertical-align: top\n }\n.lesson-content .dataframe thead th {\n text-align: right\n }</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>EC_SVE</th>\n <th>EČ objektu</th>\n <th>Katastr</th>\n <th>Ulice</th>\n <th>Sektor závady</th>\n <th>Rok závady</th>\n <th>Datum nahlášení závady</th>\n <th>Typ závady</th>\n <th>Plánovaný termín opravy</th>\n <th>Stav opravy</th>\n <th>Způsob opravy</th>\n <th>Datum opravy</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>count</th>\n <td>2666</td>\n <td>1458</td>\n <td>2669</td>\n <td>2669</td>\n <td>2669</td>\n <td>2669</td>\n <td>2669</td>\n <td>2669</td>\n <td>2669</td>\n <td>2669</td>\n <td>2668</td>\n <td>2669</td>\n </tr>\n <tr>\n <th>unique</th>\n <td>1899</td>\n <td>512</td>\n <td>48</td>\n <td>782</td>\n <td>2</td>\n <td>1</td>\n <td>363</td>\n <td>31</td>\n <td>363</td>\n <td>2</td>\n <td>53</td>\n <td>341</td>\n </tr>\n <tr>\n <th>top</th>\n <td>S-1714-161</td>\n <td>Z-531</td>\n <td>Město Brno</td>\n <td>MERHAUTOVA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-04-02 00:00:00</td>\n <td>S svítidlo-nesvítí</td>\n <td>9.4.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>15.9.2016</td>\n </tr>\n <tr>\n <th>freq</th>\n <td>13</td>\n <td>20</td>\n <td>263</td>\n <td>38</td>\n <td>1502</td>\n <td>2669</td>\n <td>24</td>\n <td>601</td>\n <td>24</td>\n <td>2589</td>\n <td>665</td>\n <td>28</td>\n </tr>\n <tr>\n <th>first</th>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>2016-01-01 00:00:00</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n </tr>\n <tr>\n <th>last</th>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>2016-12-31 00:00:00</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n <td>NaN</td>\n </tr>\n </tbody>\n</table>\n</div>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Nebo si taky můžeme nechat vykreslit graf. Osa x je daná indexem, na ose y je vybraný sloupec. Datum je v našich datech jediný sloupec, kde dává trochu smysl vykreslovat graf.</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [14]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">data</span><span class=\"p\">[</span><span class=\"s2\">"Datum nahlášení závady"</span><span class=\"p\">]</span><span class=\"o\">.</span><span class=\"n\">plot</span><span class=\"p\">()</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[14]:</div>\n\n\n\n\n<div class=\"output_text output_subarea output_execute_result\">\n<pre><matplotlib.axes._subplots.AxesSubplot at 0x7f30dca2a470></pre>\n</div>\n\n</div>\n\n<div class=\"output_area\">\n\n <div class=\"prompt\"></div>\n\n\n\n\n<div class=\"output_png output_subarea \">\n<img src=\"%0A\">\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Můžeme si taky vybrat jenom určitou podmnožinu dat. Třeba prvních pět řádků.</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [15]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">data</span><span class=\"p\">[:</span><span class=\"mi\">5</span><span class=\"p\">]</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[15]:</div>\n\n\n\n<div class=\"output_html rendered_html output_subarea output_execute_result\">\n<div>\n<style>.lesson-content .dataframe tbody tr th:only-of-type {\n vertical-align: middle\n }\n.lesson-content .dataframe tbody tr th {\n vertical-align: top\n }\n.lesson-content .dataframe thead th {\n text-align: right\n }</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>EC_SVE</th>\n <th>EČ objektu</th>\n <th>Katastr</th>\n <th>Ulice</th>\n <th>Sektor závady</th>\n <th>Rok závady</th>\n <th>Datum nahlášení závady</th>\n <th>Typ závady</th>\n <th>Plánovaný termín opravy</th>\n <th>Stav opravy</th>\n <th>Způsob opravy</th>\n <th>Datum opravy</th>\n </tr>\n <tr>\n <th>Číslo závady</th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>1</th>\n <td>S-1148-011</td>\n <td>Z-500</td>\n <td>Řečkovice</td>\n <td>TEREZY NOVÁKOVÉ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-01</td>\n <td>Z vypadený jistící prvek</td>\n <td>8.1.2016</td>\n <td>Definitivní</td>\n <td>vypadený jistící prvek</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>2</th>\n <td>S-1148-012</td>\n <td>NaN</td>\n <td>Řečkovice</td>\n <td>TEREZY NOVÁKOVÉ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-01</td>\n <td>S svítidlo-nesvítí</td>\n <td>8.1.2016</td>\n <td>Definitivní</td>\n <td>neopraveno</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>3</th>\n <td>S-1456-012</td>\n <td>NaN</td>\n <td>Zábrdovice</td>\n <td>ŠPITÁLKA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-02</td>\n <td>S svítidlo-bliká</td>\n <td>9.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>4</th>\n <td>S-1256-217</td>\n <td>NaN</td>\n <td>Komín</td>\n <td>VESLAŘSKÁ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-02</td>\n <td>S svítidlo-nesvítí</td>\n <td>9.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>5</th>\n <td>S-0478-003</td>\n <td>Z-612</td>\n <td>Staré Brno</td>\n <td>KOPEČNÁ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-02</td>\n <td>Z vypadený jistící prvek</td>\n <td>9.1.2016</td>\n <td>Definitivní</td>\n <td>vypadený jistící prvek</td>\n <td>4.1.2016</td>\n </tr>\n </tbody>\n</table>\n</div>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Nebo jenom jeden sloupec z prvních pěti řádků:</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [16]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">data</span><span class=\"p\">[</span><span class=\"s2\">"Katastr"</span><span class=\"p\">][:</span><span class=\"mi\">5</span><span class=\"p\">]</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[16]:</div>\n\n\n\n\n<div class=\"output_text output_subarea output_execute_result\">\n<pre>Číslo závady\n1 Řečkovice\n2 Řečkovice\n3 Zábrdovice\n4 Komín\n5 Staré Brno\nName: Katastr, dtype: object</pre>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Můžeme vybrat několik sloupců:</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [17]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">data</span><span class=\"p\">[[</span><span class=\"s2\">"Ulice"</span><span class=\"p\">,</span> <span class=\"s2\">"Katastr"</span><span class=\"p\">]]</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[17]:</div>\n\n\n\n<div class=\"output_html rendered_html output_subarea output_execute_result\">\n<div>\n<style>.lesson-content .dataframe tbody tr th:only-of-type {\n vertical-align: middle\n }\n.lesson-content .dataframe tbody tr th {\n vertical-align: top\n }\n.lesson-content .dataframe thead th {\n text-align: right\n }</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Ulice</th>\n <th>Katastr</th>\n </tr>\n <tr>\n <th>Číslo závady</th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>1</th>\n <td>TEREZY NOVÁKOVÉ</td>\n <td>Řečkovice</td>\n </tr>\n <tr>\n <th>2</th>\n <td>TEREZY NOVÁKOVÉ</td>\n <td>Řečkovice</td>\n </tr>\n <tr>\n <th>3</th>\n <td>ŠPITÁLKA</td>\n <td>Zábrdovice</td>\n </tr>\n <tr>\n <th>4</th>\n <td>VESLAŘSKÁ</td>\n <td>Komín</td>\n </tr>\n <tr>\n <th>5</th>\n <td>KOPEČNÁ</td>\n <td>Staré Brno</td>\n </tr>\n <tr>\n <th>6</th>\n <td>MÁCHALOVA</td>\n <td>Starý Lískovec</td>\n </tr>\n <tr>\n <th>7</th>\n <td>VEVEŘÍ</td>\n <td>Veveří</td>\n </tr>\n <tr>\n <th>8</th>\n <td>MORAVSKÉ NÁMĚSTÍ</td>\n <td>Město Brno</td>\n </tr>\n <tr>\n <th>9</th>\n <td>U SMYČKY</td>\n <td>Bosonohy</td>\n </tr>\n <tr>\n <th>10</th>\n <td>HOŠTICKÁ</td>\n <td>Bosonohy</td>\n </tr>\n <tr>\n <th>11</th>\n <td>PŘÍJEZDOVÁ</td>\n <td>Ivanovice</td>\n </tr>\n <tr>\n <th>12</th>\n <td>ÚVOZ</td>\n <td>Stránice</td>\n </tr>\n <tr>\n <th>13</th>\n <td>TUŘANKA</td>\n <td>Slatina</td>\n </tr>\n <tr>\n <th>14</th>\n <td>VLNITÁ</td>\n <td>Slatina</td>\n </tr>\n <tr>\n <th>15</th>\n <td>JIHLAVSKÁ</td>\n <td>Nový Lískovec</td>\n </tr>\n <tr>\n <th>16</th>\n <td>ZIMNÍ</td>\n <td>Maloměřice</td>\n </tr>\n <tr>\n <th>17</th>\n <td>ZIMNÍ</td>\n <td>Maloměřice</td>\n </tr>\n <tr>\n <th>18</th>\n <td>U VELKÉ CENY</td>\n <td>Kohoutovice</td>\n </tr>\n <tr>\n <th>19</th>\n <td>MENDLOVO NÁMĚSTÍ</td>\n <td>Staré Brno</td>\n </tr>\n <tr>\n <th>20</th>\n <td>KOCIÁNKA</td>\n <td>Královo Pole</td>\n </tr>\n <tr>\n <th>21</th>\n <td>KRÁLOVA</td>\n <td>Žabovřesky</td>\n </tr>\n <tr>\n <th>22</th>\n <td>OTAKARA ŠEVČÍKA</td>\n <td>Židenice</td>\n </tr>\n <tr>\n <th>23</th>\n <td>KRYMSKÁ</td>\n <td>Starý Lískovec</td>\n </tr>\n <tr>\n <th>24</th>\n <td>ZEMKOVA</td>\n <td>Žabovřesky</td>\n </tr>\n <tr>\n <th>25</th>\n <td>VINAŘICKÉHO</td>\n <td>Židenice</td>\n </tr>\n <tr>\n <th>26</th>\n <td>PELLICOVA</td>\n <td>Staré Brno</td>\n </tr>\n <tr>\n <th>27</th>\n <td>KAMPELÍKOVA</td>\n <td>Stránice</td>\n </tr>\n <tr>\n <th>28</th>\n <td>OTAKARA ŠEVČÍKA</td>\n <td>Židenice</td>\n </tr>\n <tr>\n <th>29</th>\n <td>LERCHOVA</td>\n <td>Stránice</td>\n </tr>\n <tr>\n <th>30</th>\n <td>TŮMOVA</td>\n <td>Veveří</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>2 641</th>\n <td>SOBĚŠICKÁ</td>\n <td>Lesná</td>\n </tr>\n <tr>\n <th>2 642</th>\n <td>KŘENOVÁ</td>\n <td>Trnitá</td>\n </tr>\n <tr>\n <th>2 643</th>\n <td>HELFERTOVA</td>\n <td>Černá Pole</td>\n </tr>\n <tr>\n <th>2 644</th>\n <td>NÁM. SNP</td>\n <td>Černá Pole</td>\n </tr>\n <tr>\n <th>2 645</th>\n <td>BOSKOVICKÁ</td>\n <td>Řečkovice</td>\n </tr>\n <tr>\n <th>2 646</th>\n <td>RAKOVECKÁ</td>\n <td>Bystrc</td>\n </tr>\n <tr>\n <th>2 647</th>\n <td>ŠEVČENKOVA</td>\n <td>Bosonohy</td>\n </tr>\n <tr>\n <th>2 648</th>\n <td>U SMYČKY</td>\n <td>Bosonohy</td>\n </tr>\n <tr>\n <th>2 649</th>\n <td>ZAPLETALOVA</td>\n <td>Dvorska</td>\n </tr>\n <tr>\n <th>2 650</th>\n <td>DUKELSKÁ TŘÍDA</td>\n <td>Husovice</td>\n </tr>\n <tr>\n <th>2 651</th>\n <td>BOSKOVICKÁ</td>\n <td>Řečkovice</td>\n </tr>\n <tr>\n <th>2 652</th>\n <td>DLOUHÁ</td>\n <td>Bohunice</td>\n </tr>\n <tr>\n <th>2 653</th>\n <td>ORLÍ</td>\n <td>Město Brno</td>\n </tr>\n <tr>\n <th>2 654</th>\n <td>RYSOVA</td>\n <td>Medlánky</td>\n </tr>\n <tr>\n <th>2 655</th>\n <td>DROBNÉHO</td>\n <td>Černá Pole</td>\n </tr>\n <tr>\n <th>2 656</th>\n <td>UZBECKÁ</td>\n <td>Bohunice</td>\n </tr>\n <tr>\n <th>2 657</th>\n <td>STARÁ OSADA</td>\n <td>Židenice</td>\n </tr>\n <tr>\n <th>2 658</th>\n <td>VLNITÁ</td>\n <td>Slatina</td>\n </tr>\n <tr>\n <th>2 659</th>\n <td>JIHLAVSKÁ</td>\n <td>Bohunice</td>\n </tr>\n <tr>\n <th>2 660</th>\n <td>JAKUBSKÉ NÁMĚSTÍ</td>\n <td>Město Brno</td>\n </tr>\n <tr>\n <th>2 661</th>\n <td>ZELNÝ TRH</td>\n <td>Město Brno</td>\n </tr>\n <tr>\n <th>2 662</th>\n <td>HAVRANÍ</td>\n <td>Černovice</td>\n </tr>\n <tr>\n <th>2 663</th>\n <td>SRBSKÁ</td>\n <td>Královo Pole</td>\n </tr>\n <tr>\n <th>2 664</th>\n <td>OKROUHLÁ</td>\n <td>Bohunice</td>\n </tr>\n <tr>\n <th>2 665</th>\n <td>KONRADOVA</td>\n <td>Líšeň</td>\n </tr>\n <tr>\n <th>2 666</th>\n <td>OBVODOVÁ</td>\n <td>Bystrc</td>\n </tr>\n <tr>\n <th>2 667</th>\n <td>ZAHRADNÍ</td>\n <td>Líšeň</td>\n </tr>\n <tr>\n <th>2 668</th>\n <td>KRÁSNÉHO</td>\n <td>Židenice</td>\n </tr>\n <tr>\n <th>2 669</th>\n <td>POHANKOVA</td>\n <td>Líšeň</td>\n </tr>\n <tr>\n <th>2 670</th>\n <td>TUŘANSKÉ NÁMĚSTÍ</td>\n <td>Tuřany</td>\n </tr>\n </tbody>\n</table>\n<p>2669 rows × 2 columns</p>\n</div>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Základní analýza pro sloupce s řetězci může mýt spočítání četností: kolikrát se která hodnota ve sloupci objevuje. Zjistíme 10 ulic s nejvíce poruchami:</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [19]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">data</span><span class=\"p\">[</span><span class=\"s2\">"Ulice"</span><span class=\"p\">]</span><span class=\"o\">.</span><span class=\"n\">value_counts</span><span class=\"p\">()[:</span><span class=\"mi\">10</span><span class=\"p\">]</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[19]:</div>\n\n\n\n\n<div class=\"output_text output_subarea output_execute_result\">\n<pre>MERHAUTOVA 38\nLIBUŠINA TŘÍDA 32\nVÍDEŇSKÁ 31\nMORAVSKÉ NÁMĚSTÍ 29\nOSTRAVSKÁ 28\nJIHLAVSKÁ 28\nÚVOZ 24\nČESKÁ 22\nHRADECKÁ 22\nVESLAŘSKÁ 21\nName: Ulice, dtype: int64</pre>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Tato data můžeme zase vykreslit do grafu. Výchozí čárový graf tady není vhodný, proto radši použijeme sloupcový graf (v horizontální variantě).</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [24]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">data</span><span class=\"p\">[</span><span class=\"s2\">"Ulice"</span><span class=\"p\">]</span><span class=\"o\">.</span><span class=\"n\">value_counts</span><span class=\"p\">()[:</span><span class=\"mi\">10</span><span class=\"p\">]</span><span class=\"o\">.</span><span class=\"n\">plot</span><span class=\"p\">(</span><span class=\"n\">kind</span><span class=\"o\">=</span><span class=\"s2\">"barh"</span><span class=\"p\">,</span> <span class=\"n\">figsize</span><span class=\"o\">=</span><span class=\"p\">(</span><span class=\"mi\">15</span><span class=\"p\">,</span><span class=\"mi\">8</span><span class=\"p\">))</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[24]:</div>\n\n\n\n\n<div class=\"output_text output_subarea output_execute_result\">\n<pre><matplotlib.axes._subplots.AxesSubplot at 0x7f30dc7eae48></pre>\n</div>\n\n</div>\n\n<div class=\"output_area\">\n\n <div class=\"prompt\"></div>\n\n\n\n\n<div class=\"output_png output_subarea \">\n<img src=\"%0A\">\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Podmnožinu dat můžeme vybrat stejným způsobem jako v numpy pomocí pravdivostního výrazu. Nejpreve najdeme všechny řádky, které mají daný typ poruchy, a potom si vybereme pouze tyto řádky.</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [35]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">blikajici</span> <span class=\"o\">=</span> <span class=\"n\">data</span><span class=\"p\">[</span> <span class=\"n\">data</span><span class=\"p\">[</span><span class=\"s2\">"Typ závady"</span><span class=\"p\">]</span> <span class=\"o\">==</span> <span class=\"s2\">"S svítidlo-bliká"</span> <span class=\"p\">]</span>\n<span class=\"n\">blikajici</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[35]:</div>\n\n\n\n<div class=\"output_html rendered_html output_subarea output_execute_result\">\n<div>\n<style>.lesson-content .dataframe tbody tr th:only-of-type {\n vertical-align: middle\n }\n.lesson-content .dataframe tbody tr th {\n vertical-align: top\n }\n.lesson-content .dataframe thead th {\n text-align: right\n }</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>EC_SVE</th>\n <th>EČ objektu</th>\n <th>Katastr</th>\n <th>Ulice</th>\n <th>Sektor závady</th>\n <th>Rok závady</th>\n <th>Datum nahlášení závady</th>\n <th>Typ závady</th>\n <th>Plánovaný termín opravy</th>\n <th>Stav opravy</th>\n <th>Způsob opravy</th>\n <th>Datum opravy</th>\n </tr>\n <tr>\n <th>Číslo závady</th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>3</th>\n <td>S-1456-012</td>\n <td>NaN</td>\n <td>Zábrdovice</td>\n <td>ŠPITÁLKA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-02</td>\n <td>S svítidlo-bliká</td>\n <td>9.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>14</th>\n <td>S-1269-049</td>\n <td>NaN</td>\n <td>Slatina</td>\n <td>VLNITÁ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-03</td>\n <td>S svítidlo-bliká</td>\n <td>10.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>16</th>\n <td>S-1360-009</td>\n <td>NaN</td>\n <td>Maloměřice</td>\n <td>ZIMNÍ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-03</td>\n <td>S svítidlo-bliká</td>\n <td>10.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>17</th>\n <td>S-1360-008</td>\n <td>NaN</td>\n <td>Maloměřice</td>\n <td>ZIMNÍ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-03</td>\n <td>S svítidlo-bliká</td>\n <td>10.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>18</th>\n <td>S-1204-034</td>\n <td>NaN</td>\n <td>Kohoutovice</td>\n <td>U VELKÉ CENY</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-03</td>\n <td>S svítidlo-bliká</td>\n <td>10.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2016</td>\n </tr>\n <tr>\n <th>25</th>\n <td>S-1259-003</td>\n <td>NaN</td>\n <td>Židenice</td>\n <td>VINAŘICKÉHO</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-04</td>\n <td>S svítidlo-bliká</td>\n <td>11.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>5.1.2016</td>\n </tr>\n <tr>\n <th>35</th>\n <td>S-0625-011</td>\n <td>NaN</td>\n <td>Řečkovice</td>\n <td>MARIE HÜBNEROVÉ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-05</td>\n <td>S svítidlo-bliká</td>\n <td>12.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna svítidla</td>\n <td>18.1.2016</td>\n </tr>\n <tr>\n <th>50</th>\n <td>S-1261-091</td>\n <td>R-1261-008</td>\n <td>Židenice</td>\n <td>VINIČNÍ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-07</td>\n <td>S svítidlo-bliká</td>\n <td>14.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>21.3.2016</td>\n </tr>\n <tr>\n <th>52</th>\n <td>S-0404-006</td>\n <td>NaN</td>\n <td>Chrlice</td>\n <td>K LÁZINKÁM</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-08</td>\n <td>S svítidlo-bliká</td>\n <td>15.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>11.1.2016</td>\n </tr>\n <tr>\n <th>83</th>\n <td>S-0775-001</td>\n <td>NaN</td>\n <td>Líšeň</td>\n <td>OBECKÁ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-11</td>\n <td>S svítidlo-bliká</td>\n <td>18.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>13.1.2016</td>\n </tr>\n <tr>\n <th>90</th>\n <td>S-0446-008</td>\n <td>NaN</td>\n <td>Komárov</td>\n <td>KLÁŠTERSKÉHO</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-12</td>\n <td>S svítidlo-bliká</td>\n <td>19.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>15.1.2016</td>\n </tr>\n <tr>\n <th>95</th>\n <td>S-0159-006</td>\n <td>NaN</td>\n <td>Žabovřesky</td>\n <td>DOLEŽALOVA</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-12</td>\n <td>S svítidlo-bliká</td>\n <td>19.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>13.1.2016</td>\n </tr>\n <tr>\n <th>98</th>\n <td>S-0507-003</td>\n <td>NaN</td>\n <td>Řečkovice</td>\n <td>KOŘENSKÉHO</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-13</td>\n <td>S svítidlo-bliká</td>\n <td>20.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>13.1.2016</td>\n </tr>\n <tr>\n <th>99</th>\n <td>S-0507-002</td>\n <td>NaN</td>\n <td>Řečkovice</td>\n <td>KOŘENSKÉHO</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-13</td>\n <td>S svítidlo-bliká</td>\n <td>20.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>13.1.2016</td>\n </tr>\n <tr>\n <th>109</th>\n <td>S-1058-003</td>\n <td>NaN</td>\n <td>Komárov</td>\n <td>SLUNNÁ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-13</td>\n <td>S svítidlo-bliká</td>\n <td>20.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>15.1.2016</td>\n </tr>\n <tr>\n <th>119</th>\n <td>S-0731-004</td>\n <td>NaN</td>\n <td>Lesná</td>\n <td>NARCISOVÁ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-14</td>\n <td>S svítidlo-bliká</td>\n <td>21.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>15.1.2016</td>\n </tr>\n <tr>\n <th>126</th>\n <td>S-1307-005</td>\n <td>NaN</td>\n <td>Židenice</td>\n <td>VÁPENKA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-15</td>\n <td>S svítidlo-bliká</td>\n <td>22.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>18.1.2016</td>\n </tr>\n <tr>\n <th>130</th>\n <td>S-0134-002</td>\n <td>NaN</td>\n <td>Líšeň</td>\n <td>CHMELNICE</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-17</td>\n <td>S svítidlo-bliká</td>\n <td>24.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>19.1.2016</td>\n </tr>\n <tr>\n <th>137</th>\n <td>S-0883-009</td>\n <td>NaN</td>\n <td>Štýřice</td>\n <td>POLNÍ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-18</td>\n <td>S svítidlo-bliká</td>\n <td>25.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>18.1.2016</td>\n </tr>\n <tr>\n <th>142</th>\n <td>S-1575-015</td>\n <td>NaN</td>\n <td>Líšeň</td>\n <td>SEDLÁČKOVA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-18</td>\n <td>S svítidlo-bliká</td>\n <td>25.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>19.1.2016</td>\n </tr>\n <tr>\n <th>163</th>\n <td>S-1120-005</td>\n <td>NaN</td>\n <td>Líšeň</td>\n <td>STŘELNICE</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-20</td>\n <td>S svítidlo-bliká</td>\n <td>27.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>21.1.2016</td>\n </tr>\n <tr>\n <th>170</th>\n <td>S-0739-006</td>\n <td>NaN</td>\n <td>Husovice</td>\n <td>NETUŠILOVA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-21</td>\n <td>S svítidlo-bliká</td>\n <td>28.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>22.1.2016</td>\n </tr>\n <tr>\n <th>177</th>\n <td>S-1020-005</td>\n <td>R-1020-006</td>\n <td>Stránice</td>\n <td>SEDLÁKOVA</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-22</td>\n <td>S svítidlo-bliká</td>\n <td>29.1.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>25.1.2016</td>\n </tr>\n <tr>\n <th>190</th>\n <td>S-0504-017</td>\n <td>NaN</td>\n <td>Královo Pole</td>\n <td>KOŠINOVA</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-25</td>\n <td>S svítidlo-bliká</td>\n <td>1.2.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>26.1.2016</td>\n </tr>\n <tr>\n <th>209</th>\n <td>S-0113-010</td>\n <td>NaN</td>\n <td>Černá Pole</td>\n <td>BŘENKOVA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-27</td>\n <td>S svítidlo-bliká</td>\n <td>3.2.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>27.1.2016</td>\n </tr>\n <tr>\n <th>212</th>\n <td>S-1100-011</td>\n <td>NaN</td>\n <td>Ponava</td>\n <td>STAŇKOVA</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-27</td>\n <td>S svítidlo-bliká</td>\n <td>3.2.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>28.1.2016</td>\n </tr>\n <tr>\n <th>216</th>\n <td>S-0022-006</td>\n <td>NaN</td>\n <td>Židenice</td>\n <td>BALBÍNOVA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-27</td>\n <td>S svítidlo-bliká</td>\n <td>3.2.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>28.1.2016</td>\n </tr>\n <tr>\n <th>218</th>\n <td>S-0763-015</td>\n <td>NaN</td>\n <td>Město Brno</td>\n <td>NÁM. SVOBODY</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-01-28</td>\n <td>S svítidlo-bliká</td>\n <td>4.2.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>28.1.2016</td>\n </tr>\n <tr>\n <th>226</th>\n <td>S-0060-034</td>\n <td>NaN</td>\n <td>Stránice</td>\n <td>BOHUSLAVA MARTINŮ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-28</td>\n <td>S svítidlo-bliká</td>\n <td>4.2.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>29.1.2016</td>\n </tr>\n <tr>\n <th>233</th>\n <td>S-0866-014</td>\n <td>NaN</td>\n <td>Komín</td>\n <td>PODLESÍ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-01-29</td>\n <td>S svítidlo-bliká</td>\n <td>5.2.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>1.2.2016</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>2 419</th>\n <td>S-1049-022</td>\n <td>NaN</td>\n <td>Slatina</td>\n <td>SLAVKOVSKÁ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-11-30</td>\n <td>S svítidlo-bliká</td>\n <td>7.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>20.12.2016</td>\n </tr>\n <tr>\n <th>2 464</th>\n <td>S-1043-004</td>\n <td>NaN</td>\n <td>Komárov</td>\n <td>SLADKÉHO</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-05</td>\n <td>S svítidlo-bliká</td>\n <td>12.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>21.12.2016</td>\n </tr>\n <tr>\n <th>2 471</th>\n <td>S-1141-007</td>\n <td>NaN</td>\n <td>Zábrdovice</td>\n <td>SÝPKA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-05</td>\n <td>S svítidlo-bliká</td>\n <td>12.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>12.12.2016</td>\n </tr>\n <tr>\n <th>2 476</th>\n <td>S-1731-042</td>\n <td>NaN</td>\n <td>Útěchov u Brna</td>\n <td>VE VILKÁCH</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-06</td>\n <td>S svítidlo-bliká</td>\n <td>13.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>12.12.2016</td>\n </tr>\n <tr>\n <th>2 479</th>\n <td>S-1253-010</td>\n <td>NaN</td>\n <td>Husovice</td>\n <td>VENHUDOVA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-06</td>\n <td>S svítidlo-bliká</td>\n <td>13.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna zapalovače</td>\n <td>12.12.2016</td>\n </tr>\n <tr>\n <th>2 485</th>\n <td>S-0577-006</td>\n <td>NaN</td>\n <td>Jehnice</td>\n <td>LELEKOVICKÁ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-07</td>\n <td>S svítidlo-bliká</td>\n <td>14.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>8.12.2016</td>\n </tr>\n <tr>\n <th>2 488</th>\n <td>S-1160-011</td>\n <td>R-1160-002</td>\n <td>Žabovřesky</td>\n <td>TOPOLKY</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-07</td>\n <td>S svítidlo-bliká</td>\n <td>14.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>8.12.2016</td>\n </tr>\n <tr>\n <th>2 490</th>\n <td>S-0627-020</td>\n <td>NaN</td>\n <td>Lesná</td>\n <td>MARIE MAJEROVÉ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-07</td>\n <td>S svítidlo-bliká</td>\n <td>14.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>12.12.2016</td>\n </tr>\n <tr>\n <th>2 522</th>\n <td>S-0304-035</td>\n <td>NaN</td>\n <td>Líšeň</td>\n <td>HOUBALOVA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-11</td>\n <td>S svítidlo-bliká</td>\n <td>18.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>16.12.2016</td>\n </tr>\n <tr>\n <th>2 525</th>\n <td>S-0589-006</td>\n <td>NaN</td>\n <td>Lesná</td>\n <td>LILIOVÁ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-12</td>\n <td>S svítidlo-bliká</td>\n <td>19.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>6.3.2017</td>\n </tr>\n <tr>\n <th>2 526</th>\n <td>S-0079-035</td>\n <td>NaN</td>\n <td>Řečkovice</td>\n <td>BRATŘÍ KŘIČKŮ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-12</td>\n <td>S svítidlo-bliká</td>\n <td>19.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>13.12.2016</td>\n </tr>\n <tr>\n <th>2 534</th>\n <td>S-1538-048</td>\n <td>NaN</td>\n <td>Nový Lískovec</td>\n <td>KONIKLECOVÁ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-13</td>\n <td>S svítidlo-bliká</td>\n <td>20.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>14.12.2016</td>\n </tr>\n <tr>\n <th>2 536</th>\n <td>S-0899-042</td>\n <td>NaN</td>\n <td>Žabovřesky</td>\n <td>POZNAŇSKÁ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-13</td>\n <td>S svítidlo-bliká</td>\n <td>20.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>14.12.2016</td>\n </tr>\n <tr>\n <th>2 539</th>\n <td>S-0079-013</td>\n <td>R-0079-006</td>\n <td>Řečkovice</td>\n <td>BRATŘÍ KŘIČKŮ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-13</td>\n <td>S svítidlo-bliká</td>\n <td>20.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>14.12.2016</td>\n </tr>\n <tr>\n <th>2 541</th>\n <td>S-0056-005</td>\n <td>NaN</td>\n <td>Líšeň</td>\n <td>BODLÁKOVA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-13</td>\n <td>S svítidlo-bliká</td>\n <td>20.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>20.12.2016</td>\n </tr>\n <tr>\n <th>2 546</th>\n <td>S-1851-011</td>\n <td>NaN</td>\n <td>Soběšice</td>\n <td>KLARISKY</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-14</td>\n <td>S svítidlo-bliká</td>\n <td>21.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>19.1.2017</td>\n </tr>\n <tr>\n <th>2 551</th>\n <td>S-1032-015</td>\n <td>NaN</td>\n <td>Židenice</td>\n <td>SKORKOVSKÉHO</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-15</td>\n <td>S svítidlo-bliká</td>\n <td>22.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>20.12.2016</td>\n </tr>\n <tr>\n <th>2 554</th>\n <td>S-0222-004</td>\n <td>NaN</td>\n <td>Stránice</td>\n <td>FRANTIŠKY STRÁNECKÉ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-15</td>\n <td>S svítidlo-bliká</td>\n <td>22.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>16.12.2016</td>\n </tr>\n <tr>\n <th>2 555</th>\n <td>S-0891-001</td>\n <td>NaN</td>\n <td>Dolní Heršpice</td>\n <td>POPLUŽNÍ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-15</td>\n <td>S svítidlo-bliká</td>\n <td>22.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>21.12.2016</td>\n </tr>\n <tr>\n <th>2 561</th>\n <td>S-0775-006</td>\n <td>NaN</td>\n <td>Líšeň</td>\n <td>OBECKÁ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-15</td>\n <td>S svítidlo-bliká</td>\n <td>22.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>21.12.2016</td>\n </tr>\n <tr>\n <th>2 573</th>\n <td>S-0398-005</td>\n <td>R-0398-003</td>\n <td>Město Brno</td>\n <td>JÁNSKÁ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-17</td>\n <td>S svítidlo-bliká</td>\n <td>24.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>21.12.2016</td>\n </tr>\n <tr>\n <th>2 577</th>\n <td>S-1484-023</td>\n <td>NaN</td>\n <td>Soběšice</td>\n <td>ÚTĚCHOVSKÁ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-17</td>\n <td>S svítidlo-bliká</td>\n <td>24.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>19.12.2016</td>\n </tr>\n <tr>\n <th>2 582</th>\n <td>S-0789-051</td>\n <td>NaN</td>\n <td>Černovice</td>\n <td>OLOMOUCKÁ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-17</td>\n <td>S svítidlo-bliká</td>\n <td>24.12.2016</td>\n <td>Definitivní</td>\n <td>při kontrole vše v pořádku</td>\n <td>22.12.2016</td>\n </tr>\n <tr>\n <th>2 591</th>\n <td>S-1076-008</td>\n <td>NaN</td>\n <td>Jundrov</td>\n <td>SOSNOVÁ</td>\n <td>Brno - západ</td>\n <td>2 016</td>\n <td>2016-12-19</td>\n <td>S svítidlo-bliká</td>\n <td>26.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>20.12.2016</td>\n </tr>\n <tr>\n <th>2 593</th>\n <td>S-0594-044</td>\n <td>NaN</td>\n <td>Lesná</td>\n <td>LOOSOVA</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-19</td>\n <td>S svítidlo-bliká</td>\n <td>26.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>23.12.2016</td>\n </tr>\n <tr>\n <th>2 601</th>\n <td>S-0386-059</td>\n <td>NaN</td>\n <td>Líšeň</td>\n <td>JOSEFY FAIMONOVÉ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-20</td>\n <td>S svítidlo-bliká</td>\n <td>27.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>22.12.2016</td>\n </tr>\n <tr>\n <th>2 606</th>\n <td>S-0051-003</td>\n <td>R-0051-001</td>\n <td>Černovice</td>\n <td>BLATOUCHOVÁ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-21</td>\n <td>S svítidlo-bliká</td>\n <td>28.12.2016</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>22.12.2016</td>\n </tr>\n <tr>\n <th>2 642</th>\n <td>S-0560-054</td>\n <td>NaN</td>\n <td>Trnitá</td>\n <td>KŘENOVÁ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-27</td>\n <td>S svítidlo-bliká</td>\n <td>3.1.2017</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>3.1.2017</td>\n </tr>\n <tr>\n <th>2 667</th>\n <td>S-1339-004</td>\n <td>R-1339-001</td>\n <td>Líšeň</td>\n <td>ZAHRADNÍ</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-30</td>\n <td>S svítidlo-bliká</td>\n <td>6.1.2017</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>3.1.2017</td>\n </tr>\n <tr>\n <th>2 668</th>\n <td>S-0530-010</td>\n <td>NaN</td>\n <td>Židenice</td>\n <td>KRÁSNÉHO</td>\n <td>Brno - východ</td>\n <td>2 016</td>\n <td>2016-12-30</td>\n <td>S svítidlo-bliká</td>\n <td>6.1.2017</td>\n <td>Definitivní</td>\n <td>S výměna světelného zdroje</td>\n <td>4.1.2017</td>\n </tr>\n </tbody>\n</table>\n<p>278 rows × 12 columns</p>\n</div>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Na této podmnožině můžeme zase spočítat četnosti:</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [36]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">pocty_blikajicich</span> <span class=\"o\">=</span> <span class=\"n\">blikajici</span><span class=\"p\">[</span><span class=\"s2\">"Katastr"</span><span class=\"p\">]</span><span class=\"o\">.</span><span class=\"n\">value_counts</span><span class=\"p\">()</span>\n<span class=\"n\">pocty_blikajicich</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[36]:</div>\n\n\n\n\n<div class=\"output_text output_subarea output_execute_result\">\n<pre>Židenice 28\nLíšeň 26\nČerná Pole 18\nŘečkovice 17\nLesná 15\nMěsto Brno 14\nKrálovo Pole 13\nŽabovřesky 12\nVeveří 12\nHusovice 12\nZábrdovice 8\nKomín 8\nBystrc 8\nSlatina 7\nŠtýřice 6\nStaré Brno 6\nČernovice 5\nStránice 5\nKohoutovice 5\nChrlice 5\nKomárov 5\nBosonohy 4\nJundrov 3\nStarý Lískovec 3\nBohunice 3\nPonava 3\nÚtěchov u Brna 3\nMedlánky 2\nKníničky 2\nSoběšice 2\nObřany 2\nŽebětín 2\nOřešín 2\nBrněnské Ivanovice 2\nMaloměřice 2\nTrnitá 2\nSadová 1\nHorní Heršpice 1\nJehnice 1\nNový Lískovec 1\nDolní Heršpice 1\nPisárky 1\nName: Katastr, dtype: int64</pre>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Co třeba zkusit zjistit, ve kterém katastru je nejvíce hlášených blikajících světel v poměru k ostatním poruchám?</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [37]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">celkove_pocty</span> <span class=\"o\">=</span> <span class=\"n\">data</span><span class=\"p\">[</span><span class=\"s2\">"Katastr"</span><span class=\"p\">]</span><span class=\"o\">.</span><span class=\"n\">value_counts</span><span class=\"p\">()</span>\n<span class=\"n\">pomery</span> <span class=\"o\">=</span> <span class=\"n\">pocty_blikajicich</span> <span class=\"o\">/</span> <span class=\"n\">celkove_pocty</span>\n<span class=\"n\">pomery</span> <span class=\"o\">=</span> <span class=\"n\">pomery</span><span class=\"o\">.</span><span class=\"n\">dropna</span><span class=\"p\">()</span><span class=\"o\">.</span><span class=\"n\">sort_values</span><span class=\"p\">(</span><span class=\"n\">ascending</span><span class=\"o\">=</span><span class=\"kc\">False</span><span class=\"p\">)</span>\n<span class=\"n\">pomery</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[37]:</div>\n\n\n\n\n<div class=\"output_text output_subarea output_execute_result\">\n<pre>Útěchov u Brna 0.428571\nOřešín 0.400000\nSadová 0.333333\nChrlice 0.333333\nKníničky 0.333333\nHusovice 0.250000\nŘečkovice 0.223684\nLíšeň 0.214876\nBosonohy 0.210526\nZábrdovice 0.177778\nVeveří 0.166667\nBrněnské Ivanovice 0.166667\nŽidenice 0.160920\nSoběšice 0.142857\nLesná 0.128205\nČerná Pole 0.127660\nPonava 0.120000\nŽabovřesky 0.118812\nŽebětín 0.100000\nMedlánky 0.100000\nJundrov 0.096774\nObřany 0.095238\nKrálovo Pole 0.091549\nDolní Heršpice 0.090909\nBystrc 0.089888\nKomárov 0.089286\nStránice 0.086207\nKomín 0.082474\nŠtýřice 0.081081\nStaré Brno 0.077922\nJehnice 0.071429\nČernovice 0.070423\nTrnitá 0.066667\nKohoutovice 0.057471\nMěsto Brno 0.053232\nMaloměřice 0.052632\nStarý Lískovec 0.052632\nSlatina 0.052632\nHorní Heršpice 0.037037\nBohunice 0.029412\nNový Lískovec 0.017241\nPisárky 0.016393\nName: Katastr, dtype: float64</pre>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Tato data opět můžeme dostat do grafu:</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [38]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">pomery</span><span class=\"o\">.</span><span class=\"n\">plot</span><span class=\"p\">(</span><span class=\"n\">kind</span><span class=\"o\">=</span><span class=\"s2\">"bar"</span><span class=\"p\">,</span> <span class=\"n\">figsize</span><span class=\"o\">=</span><span class=\"p\">(</span><span class=\"mi\">15</span><span class=\"p\">,</span><span class=\"mi\">5</span><span class=\"p\">))</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[38]:</div>\n\n\n\n\n<div class=\"output_text output_subarea output_execute_result\">\n<pre><matplotlib.axes._subplots.AxesSubplot at 0x7fe5e69e19b0></pre>\n</div>\n\n</div>\n\n<div class=\"output_area\">\n\n <div class=\"prompt\"></div>\n\n\n\n\n<div class=\"output_png output_subarea \">\n<img src=\"%0A\">\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Můžeme zkusit zjistit, jestli je nějaký den, kdy je hlášeno více poruch než v jiné dny. Pro jednoduchost se omezíme na jeden katastr.</p>\n<p>Začneme výběrem podmnožiny dat.</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [39]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">slatina</span> <span class=\"o\">=</span> <span class=\"n\">data</span><span class=\"p\">[</span><span class=\"n\">data</span><span class=\"p\">[</span><span class=\"s2\">"Katastr"</span><span class=\"p\">]</span> <span class=\"o\">==</span> <span class=\"s2\">"Slatina"</span><span class=\"p\">]</span>\n<span class=\"n\">slatina</span> <span class=\"o\">=</span> <span class=\"n\">slatina</span><span class=\"p\">[[</span><span class=\"s2\">"Katastr"</span><span class=\"p\">,</span> <span class=\"s2\">"Ulice"</span><span class=\"p\">,</span> <span class=\"s2\">"Datum nahlášení závady"</span><span class=\"p\">]]</span>\n<span class=\"n\">slatina</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[39]:</div>\n\n\n\n<div class=\"output_html rendered_html output_subarea output_execute_result\">\n<div>\n<style>.lesson-content .dataframe tbody tr th:only-of-type {\n vertical-align: middle\n }\n.lesson-content .dataframe tbody tr th {\n vertical-align: top\n }\n.lesson-content .dataframe thead th {\n text-align: right\n }</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Katastr</th>\n <th>Ulice</th>\n <th>Datum nahlášení závady</th>\n </tr>\n <tr>\n <th>Číslo závady</th>\n <th></th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>13</th>\n <td>Slatina</td>\n <td>TUŘANKA</td>\n <td>2016-01-03</td>\n </tr>\n <tr>\n <th>14</th>\n <td>Slatina</td>\n <td>VLNITÁ</td>\n <td>2016-01-03</td>\n </tr>\n <tr>\n <th>39</th>\n <td>Slatina</td>\n <td>POMEZNÍ</td>\n <td>2016-01-06</td>\n </tr>\n <tr>\n <th>55</th>\n <td>Slatina</td>\n <td>HVIEZDOSLAVOVA</td>\n <td>2016-01-08</td>\n </tr>\n <tr>\n <th>56</th>\n <td>Slatina</td>\n <td>V NOVÉ ČTVRTI</td>\n <td>2016-01-08</td>\n </tr>\n <tr>\n <th>57</th>\n <td>Slatina</td>\n <td>POMEZNÍ</td>\n <td>2016-01-08</td>\n </tr>\n <tr>\n <th>89</th>\n <td>Slatina</td>\n <td>ŘÍPSKÁ</td>\n <td>2016-01-12</td>\n </tr>\n <tr>\n <th>104</th>\n <td>Slatina</td>\n <td>V NOVÉ ČTVRTI</td>\n <td>2016-01-13</td>\n </tr>\n <tr>\n <th>105</th>\n <td>Slatina</td>\n <td>POMEZNÍ</td>\n <td>2016-01-13</td>\n </tr>\n <tr>\n <th>106</th>\n <td>Slatina</td>\n <td>V NOVÉ ČTVRTI</td>\n <td>2016-01-13</td>\n </tr>\n <tr>\n <th>107</th>\n <td>Slatina</td>\n <td>HVIEZDOSLAVOVA</td>\n <td>2016-01-13</td>\n </tr>\n <tr>\n <th>120</th>\n <td>Slatina</td>\n <td>HVIEZDOSLAVOVA</td>\n <td>2016-01-14</td>\n </tr>\n <tr>\n <th>150</th>\n <td>Slatina</td>\n <td>HVIEZDOSLAVOVA</td>\n <td>2016-01-19</td>\n </tr>\n <tr>\n <th>166</th>\n <td>Slatina</td>\n <td>VLNITÁ</td>\n <td>2016-01-20</td>\n </tr>\n <tr>\n <th>175</th>\n <td>Slatina</td>\n <td>OSTRAVSKÁ</td>\n <td>2016-01-22</td>\n </tr>\n <tr>\n <th>179</th>\n <td>Slatina</td>\n <td>HVIEZDOSLAVOVA</td>\n <td>2016-01-22</td>\n </tr>\n <tr>\n <th>180</th>\n <td>Slatina</td>\n <td>POMEZNÍ</td>\n <td>2016-01-22</td>\n </tr>\n <tr>\n <th>247</th>\n <td>Slatina</td>\n <td>TILHONOVA</td>\n <td>2016-02-01</td>\n </tr>\n <tr>\n <th>318</th>\n <td>Slatina</td>\n <td>TUŘANKA</td>\n <td>2016-02-14</td>\n </tr>\n <tr>\n <th>376</th>\n <td>Slatina</td>\n <td>OSTRAVSKÁ</td>\n <td>2016-02-19</td>\n </tr>\n <tr>\n <th>381</th>\n <td>Slatina</td>\n <td>OSTRAVSKÁ</td>\n <td>2016-02-19</td>\n </tr>\n <tr>\n <th>412</th>\n <td>Slatina</td>\n <td>ROUSÍNOVSKÁ</td>\n <td>2016-02-24</td>\n </tr>\n <tr>\n <th>432</th>\n <td>Slatina</td>\n <td>MOUTNICKÁ</td>\n <td>2016-02-26</td>\n </tr>\n <tr>\n <th>436</th>\n <td>Slatina</td>\n <td>TILHONOVA</td>\n <td>2016-02-27</td>\n </tr>\n <tr>\n <th>468</th>\n <td>Slatina</td>\n <td>PŘEMYSLOVO NÁMĚSTÍ</td>\n <td>2016-03-03</td>\n </tr>\n <tr>\n <th>486</th>\n <td>Slatina</td>\n <td>BLAŽOVICKÁ</td>\n <td>2016-03-05</td>\n </tr>\n <tr>\n <th>487</th>\n <td>Slatina</td>\n <td>BLAŽOVICKÁ</td>\n <td>2016-03-05</td>\n </tr>\n <tr>\n <th>507</th>\n <td>Slatina</td>\n <td>OSTRAVSKÁ</td>\n <td>2016-03-09</td>\n </tr>\n <tr>\n <th>562</th>\n <td>Slatina</td>\n <td>HVIEZDOSLAVOVA</td>\n <td>2016-03-15</td>\n </tr>\n <tr>\n <th>564</th>\n <td>Slatina</td>\n <td>ŘÍPSKÁ</td>\n <td>2016-03-15</td>\n </tr>\n <tr>\n <th>...</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>1 693</th>\n <td>Slatina</td>\n <td>SLATINKA</td>\n <td>2016-09-04</td>\n </tr>\n <tr>\n <th>1 699</th>\n <td>Slatina</td>\n <td>ROUSÍNOVSKÁ</td>\n <td>2016-09-05</td>\n </tr>\n <tr>\n <th>1 705</th>\n <td>Slatina</td>\n <td>MIKULČICKÁ</td>\n <td>2016-09-05</td>\n </tr>\n <tr>\n <th>1 707</th>\n <td>Slatina</td>\n <td>OSTRAVSKÁ</td>\n <td>2016-09-06</td>\n </tr>\n <tr>\n <th>1 718</th>\n <td>Slatina</td>\n <td>SLATINKA</td>\n <td>2016-09-07</td>\n </tr>\n <tr>\n <th>1 758</th>\n <td>Slatina</td>\n <td>PŘEMYSLOVO NÁMĚSTÍ</td>\n <td>2016-09-12</td>\n </tr>\n <tr>\n <th>1 776</th>\n <td>Slatina</td>\n <td>LANGROVA</td>\n <td>2016-09-14</td>\n </tr>\n <tr>\n <th>1 800</th>\n <td>Slatina</td>\n <td>OSTRAVSKÁ</td>\n <td>2016-09-17</td>\n </tr>\n <tr>\n <th>1 809</th>\n <td>Slatina</td>\n <td>ŠMILOVSKÉHO</td>\n <td>2016-09-18</td>\n </tr>\n <tr>\n <th>1 812</th>\n <td>Slatina</td>\n <td>LANGROVA</td>\n <td>2016-09-19</td>\n </tr>\n <tr>\n <th>1 841</th>\n <td>Slatina</td>\n <td>POMEZNÍ</td>\n <td>2016-09-22</td>\n </tr>\n <tr>\n <th>1 846</th>\n <td>Slatina</td>\n <td>POMEZNÍ</td>\n <td>2016-09-23</td>\n </tr>\n <tr>\n <th>1 847</th>\n <td>Slatina</td>\n <td>HVIEZDOSLAVOVA</td>\n <td>2016-09-24</td>\n </tr>\n <tr>\n <th>1 852</th>\n <td>Slatina</td>\n <td>HVIEZDOSLAVOVA</td>\n <td>2016-09-25</td>\n </tr>\n <tr>\n <th>1 859</th>\n <td>Slatina</td>\n <td>POMEZNÍ</td>\n <td>2016-09-27</td>\n </tr>\n <tr>\n <th>1 867</th>\n <td>Slatina</td>\n <td>HVIEZDOSLAVOVA</td>\n <td>2016-09-28</td>\n </tr>\n <tr>\n <th>1 869</th>\n <td>Slatina</td>\n <td>HVIEZDOSLAVOVA</td>\n <td>2016-09-28</td>\n </tr>\n <tr>\n <th>1 886</th>\n <td>Slatina</td>\n <td>HVIEZDOSLAVOVA</td>\n <td>2016-09-30</td>\n </tr>\n <tr>\n <th>2 076</th>\n <td>Slatina</td>\n <td>LANGROVA</td>\n <td>2016-10-21</td>\n </tr>\n <tr>\n <th>2 092</th>\n <td>Slatina</td>\n <td>ČERNOVIČKY</td>\n <td>2016-10-24</td>\n </tr>\n <tr>\n <th>2 100</th>\n <td>Slatina</td>\n <td>PŘEMYSLOVO NÁMĚSTÍ</td>\n <td>2016-10-24</td>\n </tr>\n <tr>\n <th>2 162</th>\n <td>Slatina</td>\n <td>DĚDICKÁ</td>\n <td>2016-11-02</td>\n </tr>\n <tr>\n <th>2 192</th>\n <td>Slatina</td>\n <td>MIKULČICKÁ</td>\n <td>2016-11-04</td>\n </tr>\n <tr>\n <th>2 211</th>\n <td>Slatina</td>\n <td>TILHONOVA</td>\n <td>2016-11-07</td>\n </tr>\n <tr>\n <th>2 342</th>\n <td>Slatina</td>\n <td>LANGROVA</td>\n <td>2016-11-21</td>\n </tr>\n <tr>\n <th>2 419</th>\n <td>Slatina</td>\n <td>SLAVKOVSKÁ</td>\n <td>2016-11-30</td>\n </tr>\n <tr>\n <th>2 556</th>\n <td>Slatina</td>\n <td>MIKULČICKÁ</td>\n <td>2016-12-15</td>\n </tr>\n <tr>\n <th>2 565</th>\n <td>Slatina</td>\n <td>ŘÍPSKÁ</td>\n <td>2016-12-16</td>\n </tr>\n <tr>\n <th>2 621</th>\n <td>Slatina</td>\n <td>ŘÍPSKÁ</td>\n <td>2016-12-24</td>\n </tr>\n <tr>\n <th>2 658</th>\n <td>Slatina</td>\n <td>VLNITÁ</td>\n <td>2016-12-29</td>\n </tr>\n </tbody>\n</table>\n<p>133 rows × 3 columns</p>\n</div>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Na začátku jsme si nastavili index na číslo poruchy. Pro tuto analýzu ale bude praktičtější indexovat pomocí data nahlášení poruchy. Index můžeme změnít, takže to můžeme napravit bez nového načítání dat. Nejprve se ale podívejme, jak vypadá index teď.</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [40]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">slatina</span><span class=\"o\">.</span><span class=\"n\">index</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[40]:</div>\n\n\n\n\n<div class=\"output_text output_subarea output_execute_result\">\n<pre>Index(['13', '14', '39', '55', '56', '57', '89', '104', '105', '106',\n ...\n '2 100', '2 162', '2 192', '2 211', '2 342', '2 419', '2 556', '2 565',\n '2 621', '2 658'],\n dtype='object', name='Číslo závady', length=133)</pre>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Nastavíme nový index a podíváme se na data:</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [11]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">slatina_podle_data</span> <span class=\"o\">=</span> <span class=\"n\">slatina</span><span class=\"o\">.</span><span class=\"n\">set_index</span><span class=\"p\">(</span><span class=\"s2\">"Datum nahlášení závady"</span><span class=\"p\">)</span>\n<span class=\"n\">slatina_podle_data</span><span class=\"p\">[:</span><span class=\"mi\">5</span><span class=\"p\">]</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[11]:</div>\n\n\n\n<div class=\"output_html rendered_html output_subarea output_execute_result\">\n<div>\n<style>.lesson-content .dataframe tbody tr th:only-of-type {\n vertical-align: middle\n }\n.lesson-content .dataframe tbody tr th {\n vertical-align: top\n }\n.lesson-content .dataframe thead th {\n text-align: right\n }</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Katastr</th>\n <th>Ulice</th>\n </tr>\n <tr>\n <th>Datum nahlášení závady</th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>2016-01-03</th>\n <td>Slatina</td>\n <td>TUŘANKA</td>\n </tr>\n <tr>\n <th>2016-01-03</th>\n <td>Slatina</td>\n <td>VLNITÁ</td>\n </tr>\n <tr>\n <th>2016-01-06</th>\n <td>Slatina</td>\n <td>POMEZNÍ</td>\n </tr>\n <tr>\n <th>2016-01-08</th>\n <td>Slatina</td>\n <td>HVIEZDOSLAVOVA</td>\n </tr>\n <tr>\n <th>2016-01-08</th>\n <td>Slatina</td>\n <td>V NOVÉ ČTVRTI</td>\n </tr>\n </tbody>\n</table>\n</div>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>I na index samotný.</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [12]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">slatina_podle_data</span><span class=\"o\">.</span><span class=\"n\">index</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[12]:</div>\n\n\n\n\n<div class=\"output_text output_subarea output_execute_result\">\n<pre>DatetimeIndex(['2016-01-03', '2016-01-03', '2016-01-06', '2016-01-08',\n '2016-01-08', '2016-01-08', '2016-01-12', '2016-01-13',\n '2016-01-13', '2016-01-13',\n ...\n '2016-10-24', '2016-11-02', '2016-11-04', '2016-11-07',\n '2016-11-21', '2016-11-30', '2016-12-15', '2016-12-16',\n '2016-12-24', '2016-12-29'],\n dtype='datetime64[ns]', name='Datum nahlášení závady', length=133, freq=None)</pre>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Pokud je indexem datum, můžeme s ním pracovat a podívat se třeba jenom na den v měsíci:</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [13]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">slatina_podle_data</span><span class=\"o\">.</span><span class=\"n\">index</span><span class=\"o\">.</span><span class=\"n\">day</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[13]:</div>\n\n\n\n\n<div class=\"output_text output_subarea output_execute_result\">\n<pre>Int64Index([ 3, 3, 6, 8, 8, 8, 12, 13, 13, 13,\n ...\n 24, 2, 4, 7, 21, 30, 15, 16, 24, 29],\n dtype='int64', name='Datum nahlášení závady', length=133)</pre>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Nebo na den v týdnu. Překvapivě 0 znamená pondělí:</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [54]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">slatina_podle_data</span><span class=\"o\">.</span><span class=\"n\">index</span><span class=\"o\">.</span><span class=\"n\">weekday</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[54]:</div>\n\n\n\n\n<div class=\"output_text output_subarea output_execute_result\">\n<pre>Int64Index([6, 6, 2, 4, 4, 4, 1, 2, 2, 2,\n ...\n 0, 2, 4, 0, 0, 2, 3, 4, 5, 3],\n dtype='int64', name='Datum nahlášení závady', length=133)</pre>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Takto získaný den v týdnu si můžeme přidat do datového rámce:</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [14]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">slatina_podle_data</span><span class=\"o\">.</span><span class=\"n\">loc</span><span class=\"p\">[:,</span> <span class=\"s2\">"den v týdnu"</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"n\">slatina_podle_data</span><span class=\"o\">.</span><span class=\"n\">index</span><span class=\"o\">.</span><span class=\"n\">weekday</span>\n<span class=\"n\">slatina_podle_data</span><span class=\"p\">[:</span><span class=\"mi\">5</span><span class=\"p\">]</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[14]:</div>\n\n\n\n<div class=\"output_html rendered_html output_subarea output_execute_result\">\n<div>\n<style>.lesson-content .dataframe tbody tr th:only-of-type {\n vertical-align: middle\n }\n.lesson-content .dataframe tbody tr th {\n vertical-align: top\n }\n.lesson-content .dataframe thead th {\n text-align: right\n }</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Katastr</th>\n <th>Ulice</th>\n <th>den v týdnu</th>\n </tr>\n <tr>\n <th>Datum nahlášení závady</th>\n <th></th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>2016-01-03</th>\n <td>Slatina</td>\n <td>TUŘANKA</td>\n <td>6</td>\n </tr>\n <tr>\n <th>2016-01-03</th>\n <td>Slatina</td>\n <td>VLNITÁ</td>\n <td>6</td>\n </tr>\n <tr>\n <th>2016-01-06</th>\n <td>Slatina</td>\n <td>POMEZNÍ</td>\n <td>2</td>\n </tr>\n <tr>\n <th>2016-01-08</th>\n <td>Slatina</td>\n <td>HVIEZDOSLAVOVA</td>\n <td>4</td>\n </tr>\n <tr>\n <th>2016-01-08</th>\n <td>Slatina</td>\n <td>V NOVÉ ČTVRTI</td>\n <td>4</td>\n </tr>\n </tbody>\n</table>\n</div>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Pomocí metody <code>groupby</code> můžeme data shlukovat podle hodnot určitého sloupce. Tato metoda vrací objekt reprezentující několik shluků. Nás primárně zajímá, kolik je v každé skupině položek (tedy kolik poruch bylo hlášeno v ten který den).</p>\n<p>Další možnosti agregování skupin jsou třeba <code>sum</code> nebo <code>mean</code>. Většina ale dává smysl hlavně pro číselné sloupce.</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [16]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">pocty_podle_dne</span> <span class=\"o\">=</span> <span class=\"n\">slatina_podle_data</span><span class=\"o\">.</span><span class=\"n\">groupby</span><span class=\"p\">(</span><span class=\"s2\">"den v týdnu"</span><span class=\"p\">)</span><span class=\"o\">.</span><span class=\"n\">aggregate</span><span class=\"p\">(</span><span class=\"s2\">"size"</span><span class=\"p\">)</span>\n<span class=\"n\">pocty_podle_dne</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[16]:</div>\n\n\n\n\n<div class=\"output_text output_subarea output_execute_result\">\n<pre>den v týdnu\n0 17\n1 23\n2 20\n3 14\n4 24\n5 21\n6 14\ndtype: int64</pre>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Pro snažší čtení by bylo lepší zobrazovat jména dní místo čísel. Můžeme si nastavit nový index čistě pomocí seznamu hodnot:</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [17]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">pocty_podle_dne</span><span class=\"o\">.</span><span class=\"n\">index</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"s2\">"Po"</span><span class=\"p\">,</span> <span class=\"s2\">"Út"</span><span class=\"p\">,</span> <span class=\"s2\">"St"</span><span class=\"p\">,</span> <span class=\"s2\">"Čt"</span><span class=\"p\">,</span> <span class=\"s2\">"Pá"</span><span class=\"p\">,</span> <span class=\"s2\">"So"</span><span class=\"p\">,</span> <span class=\"s2\">"Ne"</span><span class=\"p\">]</span>\n<span class=\"n\">pocty_podle_dne</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[17]:</div>\n\n\n\n\n<div class=\"output_text output_subarea output_execute_result\">\n<pre>Po 17\nÚt 23\nSt 20\nČt 14\nPá 24\nSo 21\nNe 14\ndtype: int64</pre>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>A nakonec vykreslíme graf:</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [63]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">pocty_podle_dne</span><span class=\"o\">.</span><span class=\"n\">plot</span><span class=\"p\">(</span><span class=\"n\">kind</span><span class=\"o\">=</span><span class=\"s2\">"bar"</span><span class=\"p\">)</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[63]:</div>\n\n\n\n\n<div class=\"output_text output_subarea output_execute_result\">\n<pre><matplotlib.axes._subplots.AxesSubplot at 0x7f30dc47bbe0></pre>\n</div>\n\n</div>\n\n<div class=\"output_area\">\n\n <div class=\"prompt\"></div>\n\n\n\n\n<div class=\"output_png output_subarea \">\n<img src=\"%0A\">\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<h1>Mapa</h1>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Pro vykreslování map existuje mnoho různých knihoven. Tady si ukážeme <code>geopandas</code>, která má poměrně hezké rozhraní. Její velkou nevýhodou je komplikovaná instalace na Windows.</p>\n<p>Nejprve si knohovnu naimportujeme, potom načteme soubor s daty a vybereme pouze Brno.</p>\n<p>Dostaneme datový rámec jako v Pandas. Několik posledních sloupců ale obsahuje zajímavé hodnoty. Kromě souřadnic tam najdeme <code>geometry</code>: definici tvaru nějaké oblasti v mapě.</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [22]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"kn\">import</span> <span class=\"nn\">geopandas</span>\n<span class=\"n\">mapa</span> <span class=\"o\">=</span> <span class=\"n\">geopandas</span><span class=\"o\">.</span><span class=\"n\">read_file</span><span class=\"p\">(</span><span class=\"s2\">"Městské_obvody_a_městské_části__polygony.shp"</span><span class=\"p\">,</span> <span class=\"n\">encoding</span><span class=\"o\">=</span><span class=\"s2\">"utf-8"</span><span class=\"p\">)</span>\n<span class=\"n\">brno</span> <span class=\"o\">=</span> <span class=\"n\">mapa</span><span class=\"p\">[</span><span class=\"n\">mapa</span><span class=\"p\">[</span><span class=\"s2\">"NAZ_OBEC"</span><span class=\"p\">]</span> <span class=\"o\">==</span> <span class=\"s2\">"Brno"</span><span class=\"p\">]</span><span class=\"o\">.</span><span class=\"n\">copy</span><span class=\"p\">()</span>\n<span class=\"n\">brno</span><span class=\"o\">.</span><span class=\"n\">head</span><span class=\"p\">()</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[22]:</div>\n\n\n\n<div class=\"output_html rendered_html output_subarea output_execute_result\">\n<div>\n<style>.lesson-content .dataframe tbody tr th:only-of-type {\n vertical-align: middle\n }\n.lesson-content .dataframe tbody tr th {\n vertical-align: top\n }\n.lesson-content .dataframe thead th {\n text-align: right\n }</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>OBJECTID</th>\n <th>KOD_MOaMC</th>\n <th>NAZ_ZKR_MO</th>\n <th>NAZ_MOaMC</th>\n <th>KOD_OBEC</th>\n <th>NAZ_OBEC</th>\n <th>KOD_ZUJ</th>\n <th>NAZ_ZUJ</th>\n <th>KOD_OKRES</th>\n <th>KOD_LAU1</th>\n <th>NAZ_LAU1</th>\n <th>KOD_KRAJ</th>\n <th>KOD_CZNUTS</th>\n <th>NAZ_CZNUTS</th>\n <th>SX</th>\n <th>SY</th>\n <th>SHAPE_Leng</th>\n <th>SHAPE_Area</th>\n <th>geometry</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>68</th>\n <td>69</td>\n <td>550973</td>\n <td>Brno-střed</td>\n <td>Brno-střed</td>\n <td>582786</td>\n <td>Brno</td>\n <td>550973</td>\n <td>Brno-střed</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>Brno-město</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-599107.126826</td>\n <td>-1.161208e+06</td>\n <td>21011.712879</td>\n <td>1.464882e+07</td>\n <td>POLYGON ((-598972.9499999993 -1159048.82009999...</td>\n </tr>\n <tr>\n <th>69</th>\n <td>70</td>\n <td>550990</td>\n <td>Brno-Žabovřesky</td>\n <td>Brno-Žabovřesky</td>\n <td>582786</td>\n <td>Brno</td>\n <td>550990</td>\n <td>Brno-Žabovřesky</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>Brno-město</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-600420.609804</td>\n <td>-1.158450e+06</td>\n <td>10865.113284</td>\n <td>4.348780e+06</td>\n <td>POLYGON ((-600602.1099999994 -1157005.50010000...</td>\n </tr>\n <tr>\n <th>70</th>\n <td>71</td>\n <td>551007</td>\n <td>Brno-Královo Pole</td>\n <td>Brno-Královo Pole</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551007</td>\n <td>Brno-Královo Pole</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>Brno-město</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-598393.224288</td>\n <td>-1.157041e+06</td>\n <td>18814.138777</td>\n <td>1.007402e+07</td>\n <td>POLYGON ((-597252.6999999993 -1155051.28999999...</td>\n </tr>\n <tr>\n <th>71</th>\n <td>72</td>\n <td>551031</td>\n <td>Brno-sever</td>\n <td>Brno-sever</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551031</td>\n <td>Brno-sever</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>Brno-město</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-596387.912140</td>\n <td>-1.156034e+06</td>\n <td>28461.268033</td>\n <td>1.224207e+07</td>\n <td>POLYGON ((-596552.0500000007 -1152248.35000000...</td>\n </tr>\n <tr>\n <th>72</th>\n <td>73</td>\n <td>551058</td>\n <td>Brno-Židenice</td>\n <td>Brno-Židenice</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551058</td>\n <td>Brno-Židenice</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>Brno-město</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-595306.099433</td>\n <td>-1.160699e+06</td>\n <td>13108.262329</td>\n <td>5.045712e+06</td>\n <td>POLYGON ((-594706.5100000016 -1159323.91, -594...</td>\n </tr>\n </tbody>\n</table>\n</div>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Zkusíme si nakreslit mapu všech brněnských částí:</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [25]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"kn\">from</span> <span class=\"nn\">matplotlib</span> <span class=\"k\">import</span> <span class=\"n\">pyplot</span>\n<span class=\"n\">brno</span><span class=\"o\">.</span><span class=\"n\">plot</span><span class=\"p\">(</span><span class=\"n\">figsize</span><span class=\"o\">=</span><span class=\"p\">(</span><span class=\"mi\">10</span><span class=\"p\">,</span><span class=\"mi\">10</span><span class=\"p\">))</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[25]:</div>\n\n\n\n\n<div class=\"output_text output_subarea output_execute_result\">\n<pre><matplotlib.axes._subplots.AxesSubplot at 0x7fe5e486e978></pre>\n</div>\n\n</div>\n\n<div class=\"output_area\">\n\n <div class=\"prompt\"></div>\n\n\n\n\n<div class=\"output_png output_subarea \">\n<img src=\"%0A\">\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>To by asi mohlo být Brno. Kdybychom ale měli popisky pro jednotlivé oblasti, možná by to bylo přehlednější. Můžeme si je přidat. Nejprve ale potřebujeme vědět, kam popisek nakreslit. Můžeme si pro každou oblast spočítat vhodný bod, a přidat ho do dat.</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [26]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">brno</span><span class=\"p\">[</span><span class=\"s2\">"coords"</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"n\">brno</span><span class=\"p\">[</span><span class=\"s2\">"geometry"</span><span class=\"p\">]</span><span class=\"o\">.</span><span class=\"n\">apply</span><span class=\"p\">(</span><span class=\"k\">lambda</span> <span class=\"n\">x</span><span class=\"p\">:</span> <span class=\"n\">x</span><span class=\"o\">.</span><span class=\"n\">representative_point</span><span class=\"p\">()</span><span class=\"o\">.</span><span class=\"n\">coords</span><span class=\"p\">[:])</span>\n<span class=\"n\">brno</span><span class=\"p\">[</span><span class=\"s2\">"coords"</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"n\">coords</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]</span> <span class=\"k\">for</span> <span class=\"n\">coords</span> <span class=\"ow\">in</span> <span class=\"n\">brno</span><span class=\"p\">[</span><span class=\"s2\">"coords"</span><span class=\"p\">]]</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Teď můžeme vykreslit mapu jako předtím, a potom pro každou oblast přidat anotaci:</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [29]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">brno</span><span class=\"o\">.</span><span class=\"n\">plot</span><span class=\"p\">(</span><span class=\"n\">figsize</span><span class=\"o\">=</span><span class=\"p\">(</span><span class=\"mi\">10</span><span class=\"p\">,</span><span class=\"mi\">10</span><span class=\"p\">))</span>\n<span class=\"k\">for</span> <span class=\"n\">idx</span><span class=\"p\">,</span> <span class=\"n\">radek</span> <span class=\"ow\">in</span> <span class=\"n\">brno</span><span class=\"o\">.</span><span class=\"n\">iterrows</span><span class=\"p\">():</span>\n <span class=\"n\">pyplot</span><span class=\"o\">.</span><span class=\"n\">annotate</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"o\">=</span><span class=\"n\">radek</span><span class=\"p\">[</span><span class=\"s2\">"NAZ_MOaMC"</span><span class=\"p\">],</span> <span class=\"n\">xy</span><span class=\"o\">=</span><span class=\"n\">radek</span><span class=\"p\">[</span><span class=\"s2\">"coords"</span><span class=\"p\">],</span> <span class=\"n\">horizontalalignment</span><span class=\"o\">=</span><span class=\"s2\">"center"</span><span class=\"p\">)</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt\"></div>\n\n\n\n\n<div class=\"output_png output_subarea \">\n<img src=\"%0A\">\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Jako poslední příklad si do mapy zkusíme znázornit, kolik v dané oblasti je hlášeno poruch veřejného osvětlení. Na to budeme muset spočítat, kolik ji vlastně je, a přidat data do rámce s mapovými informace.</p>\n<p>Spojování datových rámců je možné jako po řádcích, tak po sloupcích. Pokud chceme spojovat po sloupcích, potřebujeme index, podle kterého se dají poznat stejné řádky. Nastavíme si proto index na název městské části.</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [30]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">brno</span> <span class=\"o\">=</span> <span class=\"n\">brno</span><span class=\"o\">.</span><span class=\"n\">set_index</span><span class=\"p\">(</span><span class=\"s2\">"NAZ_MOaMC"</span><span class=\"p\">,</span> <span class=\"n\">drop</span><span class=\"o\">=</span><span class=\"kc\">False</span><span class=\"p\">)</span>\n<span class=\"n\">brno</span><span class=\"o\">.</span><span class=\"n\">head</span><span class=\"p\">()</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[30]:</div>\n\n\n\n<div class=\"output_html rendered_html output_subarea output_execute_result\">\n<div>\n<style>.lesson-content .dataframe tbody tr th:only-of-type {\n vertical-align: middle\n }\n.lesson-content .dataframe tbody tr th {\n vertical-align: top\n }\n.lesson-content .dataframe thead th {\n text-align: right\n }</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>OBJECTID</th>\n <th>KOD_MOaMC</th>\n <th>NAZ_ZKR_MO</th>\n <th>NAZ_MOaMC</th>\n <th>KOD_OBEC</th>\n <th>NAZ_OBEC</th>\n <th>KOD_ZUJ</th>\n <th>NAZ_ZUJ</th>\n <th>KOD_OKRES</th>\n <th>KOD_LAU1</th>\n <th>NAZ_LAU1</th>\n <th>KOD_KRAJ</th>\n <th>KOD_CZNUTS</th>\n <th>NAZ_CZNUTS</th>\n <th>SX</th>\n <th>SY</th>\n <th>SHAPE_Leng</th>\n <th>SHAPE_Area</th>\n <th>geometry</th>\n <th>coords</th>\n </tr>\n <tr>\n <th>NAZ_MOaMC</th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>Brno-střed</th>\n <td>69</td>\n <td>550973</td>\n <td>Brno-střed</td>\n <td>Brno-střed</td>\n <td>582786</td>\n <td>Brno</td>\n <td>550973</td>\n <td>Brno-střed</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>Brno-město</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-599107.126826</td>\n <td>-1.161208e+06</td>\n <td>21011.712879</td>\n <td>1.464882e+07</td>\n <td>POLYGON ((-598972.9499999993 -1159048.82009999...</td>\n <td>(-599089.0881825134, -1161418.7800999992)</td>\n </tr>\n <tr>\n <th>Brno-Žabovřesky</th>\n <td>70</td>\n <td>550990</td>\n <td>Brno-Žabovřesky</td>\n <td>Brno-Žabovřesky</td>\n <td>582786</td>\n <td>Brno</td>\n <td>550990</td>\n <td>Brno-Žabovřesky</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>Brno-město</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-600420.609804</td>\n <td>-1.158450e+06</td>\n <td>10865.113284</td>\n <td>4.348780e+06</td>\n <td>POLYGON ((-600602.1099999994 -1157005.50010000...</td>\n <td>(-600242.0081863957, -1158264.8850999996)</td>\n </tr>\n <tr>\n <th>Brno-Královo Pole</th>\n <td>71</td>\n <td>551007</td>\n <td>Brno-Královo Pole</td>\n <td>Brno-Královo Pole</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551007</td>\n <td>Brno-Královo Pole</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>Brno-město</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-598393.224288</td>\n <td>-1.157041e+06</td>\n <td>18814.138777</td>\n <td>1.007402e+07</td>\n <td>POLYGON ((-597252.6999999993 -1155051.28999999...</td>\n <td>(-598973.9478040718, -1157189.1750499997)</td>\n </tr>\n <tr>\n <th>Brno-sever</th>\n <td>72</td>\n <td>551031</td>\n <td>Brno-sever</td>\n <td>Brno-sever</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551031</td>\n <td>Brno-sever</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>Brno-město</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-596387.912140</td>\n <td>-1.156034e+06</td>\n <td>28461.268033</td>\n <td>1.224207e+07</td>\n <td>POLYGON ((-596552.0500000007 -1152248.35000000...</td>\n <td>(-596332.4486210528, -1156330.1843500007)</td>\n </tr>\n <tr>\n <th>Brno-Židenice</th>\n <td>73</td>\n <td>551058</td>\n <td>Brno-Židenice</td>\n <td>Brno-Židenice</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551058</td>\n <td>Brno-Židenice</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>Brno-město</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-595306.099433</td>\n <td>-1.160699e+06</td>\n <td>13108.262329</td>\n <td>5.045712e+06</td>\n <td>POLYGON ((-594706.5100000016 -1159323.91, -594...</td>\n <td>(-595741.415136773, -1160651.2446999997)</td>\n </tr>\n </tbody>\n</table>\n</div>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Počet poruch v různých katastrech už máme spočítaný. Potřebujeme ale data trochu zpracovat, aby si odpovídaly názvy částí. Bohužel ne každý katastr patří do jediné městské části, takže tady dojde k určitým nepřesnostem.</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [41]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">poruchy</span> <span class=\"o\">=</span> <span class=\"nb\">dict</span><span class=\"p\">(</span><span class=\"n\">celkove_pocty</span><span class=\"p\">)</span>\n<span class=\"n\">poruchy</span><span class=\"p\">[</span><span class=\"s2\">"Řečkovice a Mokrá Hora"</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Řečkovice"</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Mokrá Hora"</span><span class=\"p\">)</span>\n<span class=\"n\">poruchy</span><span class=\"p\">[</span><span class=\"s2\">"Maloměřice a Obřany"</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Maloměřice"</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Obřany"</span><span class=\"p\">)</span>\n<span class=\"n\">poruchy</span><span class=\"p\">[</span><span class=\"s2\">"Ivanovice"</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Brněnské Ivanovice"</span><span class=\"p\">)</span>\n<span class=\"n\">poruchy</span><span class=\"p\">[</span><span class=\"s2\">"střed"</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Město Brno"</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Staré Brno"</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Štýřice"</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Veveří"</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Pisárky"</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Stránice"</span><span class=\"p\">)</span>\n<span class=\"n\">poruchy</span><span class=\"p\">[</span><span class=\"s2\">"Útěchov"</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Útěchov u Brna"</span><span class=\"p\">)</span>\n<span class=\"n\">poruchy</span><span class=\"p\">[</span><span class=\"s2\">"sever"</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Soběšice"</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Lesná"</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Husovice"</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Černá Pole"</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Zábrdovice"</span><span class=\"p\">)</span>\n<span class=\"n\">poruchy</span><span class=\"p\">[</span><span class=\"s2\">"jih"</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Dolní Heršpice"</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Horní Heršpice"</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Komárov"</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Přízřenice"</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Trnitá"</span><span class=\"p\">)</span>\n<span class=\"n\">poruchy</span><span class=\"p\">[</span><span class=\"s2\">"Královo Pole"</span><span class=\"p\">]</span> <span class=\"o\">+=</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Ponava"</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Sadová"</span><span class=\"p\">)</span>\n<span class=\"n\">poruchy</span><span class=\"p\">[</span><span class=\"s2\">"Tuřany"</span><span class=\"p\">]</span> <span class=\"o\">+=</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Dvorska"</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"s2\">"Holásky"</span><span class=\"p\">)</span>\n<span class=\"n\">poruchy</span> <span class=\"o\">=</span> <span class=\"p\">[(</span><span class=\"n\">f</span><span class=\"s2\">"Brno-</span><span class=\"si\">{k}</span><span class=\"s2\">"</span><span class=\"p\">,</span> <span class=\"n\">v</span><span class=\"p\">)</span> <span class=\"k\">for</span> <span class=\"n\">k</span><span class=\"p\">,</span> <span class=\"n\">v</span> <span class=\"ow\">in</span> <span class=\"n\">poruchy</span><span class=\"o\">.</span><span class=\"n\">items</span><span class=\"p\">()]</span>\n<span class=\"n\">poruchy_df</span> <span class=\"o\">=</span> <span class=\"n\">pandas</span><span class=\"o\">.</span><span class=\"n\">DataFrame</span><span class=\"o\">.</span><span class=\"n\">from_records</span><span class=\"p\">(</span><span class=\"n\">poruchy</span><span class=\"p\">,</span> <span class=\"n\">columns</span><span class=\"o\">=</span><span class=\"p\">[</span><span class=\"s2\">"NAZ"</span><span class=\"p\">,</span> <span class=\"s2\">"pocet"</span><span class=\"p\">],</span> <span class=\"n\">index</span><span class=\"o\">=</span><span class=\"s2\">"NAZ"</span><span class=\"p\">)</span>\n<span class=\"n\">poruchy_df</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[41]:</div>\n\n\n\n<div class=\"output_html rendered_html output_subarea output_execute_result\">\n<div>\n<style>.lesson-content .dataframe tbody tr th:only-of-type {\n vertical-align: middle\n }\n.lesson-content .dataframe tbody tr th {\n vertical-align: top\n }\n.lesson-content .dataframe thead th {\n text-align: right\n }</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>pocet</th>\n </tr>\n <tr>\n <th>NAZ</th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>Brno-Židenice</th>\n <td>174</td>\n </tr>\n <tr>\n <th>Brno-Královo Pole</th>\n <td>170</td>\n </tr>\n <tr>\n <th>Brno-Slatina</th>\n <td>133</td>\n </tr>\n <tr>\n <th>Brno-Líšeň</th>\n <td>121</td>\n </tr>\n <tr>\n <th>Brno-Bohunice</th>\n <td>102</td>\n </tr>\n <tr>\n <th>Brno-Žabovřesky</th>\n <td>101</td>\n </tr>\n <tr>\n <th>Brno-Komín</th>\n <td>97</td>\n </tr>\n <tr>\n <th>Brno-Bystrc</th>\n <td>89</td>\n </tr>\n <tr>\n <th>Brno-Kohoutovice</th>\n <td>87</td>\n </tr>\n <tr>\n <th>Brno-Černovice</th>\n <td>71</td>\n </tr>\n <tr>\n <th>Brno-Nový Lískovec</th>\n <td>58</td>\n </tr>\n <tr>\n <th>Brno-Starý Lískovec</th>\n <td>57</td>\n </tr>\n <tr>\n <th>Brno-Jundrov</th>\n <td>31</td>\n </tr>\n <tr>\n <th>Brno-Medlánky</th>\n <td>20</td>\n </tr>\n <tr>\n <th>Brno-Žebětín</th>\n <td>20</td>\n </tr>\n <tr>\n <th>Brno-Bosonohy</th>\n <td>19</td>\n </tr>\n <tr>\n <th>Brno-Chrlice</th>\n <td>15</td>\n </tr>\n <tr>\n <th>Brno-Jehnice</th>\n <td>14</td>\n </tr>\n <tr>\n <th>Brno-Tuřany</th>\n <td>14</td>\n </tr>\n <tr>\n <th>Brno-Kníničky</th>\n <td>6</td>\n </tr>\n <tr>\n <th>Brno-Ivanovice</th>\n <td>12</td>\n </tr>\n <tr>\n <th>Brno-Ořešín</th>\n <td>5</td>\n </tr>\n <tr>\n <th>Brno-Řečkovice a Mokrá Hora</th>\n <td>78</td>\n </tr>\n <tr>\n <th>Brno-Maloměřice a Obřany</th>\n <td>59</td>\n </tr>\n <tr>\n <th>Brno-střed</th>\n <td>605</td>\n </tr>\n <tr>\n <th>Brno-Útěchov</th>\n <td>7</td>\n </tr>\n <tr>\n <th>Brno-sever</th>\n <td>365</td>\n </tr>\n <tr>\n <th>Brno-jih</th>\n <td>134</td>\n </tr>\n </tbody>\n</table>\n</div>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Tento nový rámec teď můžeme spojit s mapovými podklady. Výchozí spojování je po řádcích, proto musíme určit osu.</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [43]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"n\">brno_s_poruchami</span> <span class=\"o\">=</span> <span class=\"n\">pandas</span><span class=\"o\">.</span><span class=\"n\">concat</span><span class=\"p\">([</span><span class=\"n\">brno</span><span class=\"p\">,</span> <span class=\"n\">poruchy_df</span><span class=\"p\">],</span> <span class=\"n\">sort</span><span class=\"o\">=</span><span class=\"kc\">False</span><span class=\"p\">,</span> <span class=\"n\">axis</span><span class=\"o\">=</span><span class=\"mi\">1</span><span class=\"p\">)</span>\n<span class=\"n\">brno_s_poruchami</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt output_prompt\">Out[43]:</div>\n\n\n\n<div class=\"output_html rendered_html output_subarea output_execute_result\">\n<div>\n<style>.lesson-content .dataframe tbody tr th:only-of-type {\n vertical-align: middle\n }\n.lesson-content .dataframe tbody tr th {\n vertical-align: top\n }\n.lesson-content .dataframe thead th {\n text-align: right\n }</style>\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>OBJECTID</th>\n <th>KOD_MOaMC</th>\n <th>NAZ_ZKR_MO</th>\n <th>NAZ_MOaMC</th>\n <th>KOD_OBEC</th>\n <th>NAZ_OBEC</th>\n <th>KOD_ZUJ</th>\n <th>NAZ_ZUJ</th>\n <th>KOD_OKRES</th>\n <th>KOD_LAU1</th>\n <th>...</th>\n <th>KOD_KRAJ</th>\n <th>KOD_CZNUTS</th>\n <th>NAZ_CZNUTS</th>\n <th>SX</th>\n <th>SY</th>\n <th>SHAPE_Leng</th>\n <th>SHAPE_Area</th>\n <th>geometry</th>\n <th>coords</th>\n <th>pocet</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>Brno-střed</th>\n <td>69</td>\n <td>550973</td>\n <td>Brno-střed</td>\n <td>Brno-střed</td>\n <td>582786</td>\n <td>Brno</td>\n <td>550973</td>\n <td>Brno-střed</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-599107.126826</td>\n <td>-1.161208e+06</td>\n <td>21011.712879</td>\n <td>1.464882e+07</td>\n <td>POLYGON ((-598972.9499999993 -1159048.82009999...</td>\n <td>(-599089.0881825134, -1161418.7800999992)</td>\n <td>605.0</td>\n </tr>\n <tr>\n <th>Brno-Žabovřesky</th>\n <td>70</td>\n <td>550990</td>\n <td>Brno-Žabovřesky</td>\n <td>Brno-Žabovřesky</td>\n <td>582786</td>\n <td>Brno</td>\n <td>550990</td>\n <td>Brno-Žabovřesky</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-600420.609804</td>\n <td>-1.158450e+06</td>\n <td>10865.113284</td>\n <td>4.348780e+06</td>\n <td>POLYGON ((-600602.1099999994 -1157005.50010000...</td>\n <td>(-600242.0081863957, -1158264.8850999996)</td>\n <td>101.0</td>\n </tr>\n <tr>\n <th>Brno-Královo Pole</th>\n <td>71</td>\n <td>551007</td>\n <td>Brno-Královo Pole</td>\n <td>Brno-Královo Pole</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551007</td>\n <td>Brno-Královo Pole</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-598393.224288</td>\n <td>-1.157041e+06</td>\n <td>18814.138777</td>\n <td>1.007402e+07</td>\n <td>POLYGON ((-597252.6999999993 -1155051.28999999...</td>\n <td>(-598973.9478040718, -1157189.1750499997)</td>\n <td>170.0</td>\n </tr>\n <tr>\n <th>Brno-sever</th>\n <td>72</td>\n <td>551031</td>\n <td>Brno-sever</td>\n <td>Brno-sever</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551031</td>\n <td>Brno-sever</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-596387.912140</td>\n <td>-1.156034e+06</td>\n <td>28461.268033</td>\n <td>1.224207e+07</td>\n <td>POLYGON ((-596552.0500000007 -1152248.35000000...</td>\n <td>(-596332.4486210528, -1156330.1843500007)</td>\n <td>365.0</td>\n </tr>\n <tr>\n <th>Brno-Židenice</th>\n <td>73</td>\n <td>551058</td>\n <td>Brno-Židenice</td>\n <td>Brno-Židenice</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551058</td>\n <td>Brno-Židenice</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-595306.099433</td>\n <td>-1.160699e+06</td>\n <td>13108.262329</td>\n <td>5.045712e+06</td>\n <td>POLYGON ((-594706.5100000016 -1159323.91, -594...</td>\n <td>(-595741.415136773, -1160651.2446999997)</td>\n <td>174.0</td>\n </tr>\n <tr>\n <th>Brno-Černovice</th>\n <td>74</td>\n <td>551066</td>\n <td>Brno-Černovice</td>\n <td>Brno-Černovice</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551066</td>\n <td>Brno-Černovice</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-595373.018355</td>\n <td>-1.162892e+06</td>\n <td>10449.323314</td>\n <td>6.291806e+06</td>\n <td>POLYGON ((-596356.1099999994 -1161487.45010000...</td>\n <td>(-595322.4330897855, -1162854.1150499992)</td>\n <td>71.0</td>\n </tr>\n <tr>\n <th>Brno-jih</th>\n <td>75</td>\n <td>551074</td>\n <td>Brno-jih</td>\n <td>Brno-jih</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551074</td>\n <td>Brno-jih</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-598118.332968</td>\n <td>-1.164941e+06</td>\n <td>19718.090816</td>\n <td>1.279240e+07</td>\n <td>POLYGON ((-596731.120000001 -1161671.18, -5967...</td>\n <td>(-598325.5423521271, -1164508.7350499984)</td>\n <td>134.0</td>\n </tr>\n <tr>\n <th>Brno-Bohunice</th>\n <td>76</td>\n <td>551082</td>\n <td>Brno-Bohunice</td>\n <td>Brno-Bohunice</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551082</td>\n <td>Brno-Bohunice</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-600545.202641</td>\n <td>-1.163337e+06</td>\n <td>10195.831411</td>\n <td>3.017709e+06</td>\n <td>POLYGON ((-601002.7100000009 -1161967.82009999...</td>\n <td>(-600625.2344267721, -1163263.2112499997)</td>\n <td>102.0</td>\n </tr>\n <tr>\n <th>Brno-Starý Lískovec</th>\n <td>77</td>\n <td>551091</td>\n <td>Brno-Starý Lískovec</td>\n <td>Brno-Starý Lískovec</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551091</td>\n <td>Brno-Starý Lískovec</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-601824.274064</td>\n <td>-1.163777e+06</td>\n <td>9638.476181</td>\n <td>3.283573e+06</td>\n <td>POLYGON ((-601051.9600000009 -1162542.89999999...</td>\n <td>(-601873.3829225947, -1163770.700100001)</td>\n <td>57.0</td>\n </tr>\n <tr>\n <th>Brno-Nový Lískovec</th>\n <td>78</td>\n <td>551112</td>\n <td>Brno-Nový Lískovec</td>\n <td>Brno-Nový Lískovec</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551112</td>\n <td>Brno-Nový Lískovec</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-602113.027342</td>\n <td>-1.162014e+06</td>\n <td>5849.668623</td>\n <td>1.654432e+06</td>\n <td>POLYGON ((-601902.0199999996 -1161269.00010000...</td>\n <td>(-602141.5874489998, -1161991.3051000014)</td>\n <td>58.0</td>\n </tr>\n <tr>\n <th>Brno-Kohoutovice</th>\n <td>79</td>\n <td>551147</td>\n <td>Brno-Kohoutovice</td>\n <td>Brno-Kohoutovice</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551147</td>\n <td>Brno-Kohoutovice</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-602724.318354</td>\n <td>-1.160502e+06</td>\n <td>9945.563722</td>\n <td>4.085491e+06</td>\n <td>POLYGON ((-602977.370000001 -1159558.5601, -60...</td>\n <td>(-602845.8283676622, -1160474.31745)</td>\n <td>87.0</td>\n </tr>\n <tr>\n <th>Brno-Jundrov</th>\n <td>80</td>\n <td>551171</td>\n <td>Brno-Jundrov</td>\n <td>Brno-Jundrov</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551171</td>\n <td>Brno-Jundrov</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-602469.191502</td>\n <td>-1.158802e+06</td>\n <td>11761.802804</td>\n <td>4.221080e+06</td>\n <td>POLYGON ((-603188.6799999997 -1157361.87000000...</td>\n <td>(-602340.8641554874, -1158993.5900500007)</td>\n <td>31.0</td>\n </tr>\n <tr>\n <th>Brno-Bystrc</th>\n <td>81</td>\n <td>551198</td>\n <td>Brno-Bystrc</td>\n <td>Brno-Bystrc</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551198</td>\n <td>Brno-Bystrc</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-607059.680294</td>\n <td>-1.155566e+06</td>\n <td>39812.756010</td>\n <td>2.724224e+07</td>\n <td>POLYGON ((-608145.9400000013 -1150485.60000000...</td>\n <td>(-607374.9921216916, -1154503.6900500003)</td>\n <td>89.0</td>\n </tr>\n <tr>\n <th>Brno-Kníničky</th>\n <td>82</td>\n <td>551210</td>\n <td>Brno-Kníničky</td>\n <td>Brno-Kníničky</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551210</td>\n <td>Brno-Kníničky</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-606000.584398</td>\n <td>-1.152704e+06</td>\n <td>22000.104018</td>\n <td>1.092800e+07</td>\n <td>POLYGON ((-607550.8299999982 -1149918.64999999...</td>\n <td>(-605819.1174333331, -1153034.6750000007)</td>\n <td>6.0</td>\n </tr>\n <tr>\n <th>Brno-Komín</th>\n <td>83</td>\n <td>551228</td>\n <td>Brno-Komín</td>\n <td>Brno-Komín</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551228</td>\n <td>Brno-Komín</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-602024.339840</td>\n <td>-1.156080e+06</td>\n <td>16272.660264</td>\n <td>7.598840e+06</td>\n <td>POLYGON ((-602512.9499999993 -1153508.30999999...</td>\n <td>(-601832.7081711115, -1156108.9000000004)</td>\n <td>97.0</td>\n </tr>\n <tr>\n <th>Brno-Medlánky</th>\n <td>84</td>\n <td>551236</td>\n <td>Brno-Medlánky</td>\n <td>Brno-Medlánky</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551236</td>\n <td>Brno-Medlánky</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-600645.914466</td>\n <td>-1.155057e+06</td>\n <td>10601.740155</td>\n <td>3.510207e+06</td>\n <td>POLYGON ((-601463.7300000004 -1153941.05999999...</td>\n <td>(-600770.6437999412, -1154899.8100000005)</td>\n <td>20.0</td>\n </tr>\n <tr>\n <th>Brno-Řečkovice a Mokrá Hora</th>\n <td>85</td>\n <td>551244</td>\n <td>Brno-Řečkov. a M.Hora</td>\n <td>Brno-Řečkovice a Mokrá Hora</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551244</td>\n <td>Brno-Řečkovice a Mokrá Hora</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-598775.848808</td>\n <td>-1.154307e+06</td>\n <td>16472.916389</td>\n <td>7.571217e+06</td>\n <td>POLYGON ((-598721.129999999 -1153198.4201, -59...</td>\n <td>(-598767.8359843933, -1154394.9800000004)</td>\n <td>78.0</td>\n </tr>\n <tr>\n <th>Brno-Maloměřice a Obřany</th>\n <td>86</td>\n <td>551252</td>\n <td>Brno-Maloměřice a Obř.</td>\n <td>Brno-Maloměřice a Obřany</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551252</td>\n <td>Brno-Maloměřice a Obřany</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-594712.425429</td>\n <td>-1.157349e+06</td>\n <td>17036.942625</td>\n <td>9.291087e+06</td>\n <td>POLYGON ((-595813.620000001 -1154939.23, -5958...</td>\n <td>(-594459.9119527972, -1157225.0899999999)</td>\n <td>59.0</td>\n </tr>\n <tr>\n <th>Brno-Vinohrady</th>\n <td>87</td>\n <td>551279</td>\n <td>Brno-Vinohrady</td>\n <td>Brno-Vinohrady</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551279</td>\n <td>Brno-Vinohrady</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-594000.500322</td>\n <td>-1.159879e+06</td>\n <td>9640.930008</td>\n <td>1.955207e+06</td>\n <td>POLYGON ((-592737.5500000007 -1158832.30009999...</td>\n <td>(-593998.9414789472, -1159853.3806499988)</td>\n <td>NaN</td>\n </tr>\n <tr>\n <th>Brno-Líšeň</th>\n <td>88</td>\n <td>551287</td>\n <td>Brno-Líšeň</td>\n <td>Brno-Líšeň</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551287</td>\n <td>Brno-Líšeň</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-591448.485685</td>\n <td>-1.159769e+06</td>\n <td>23753.010689</td>\n <td>1.570760e+07</td>\n <td>POLYGON ((-589128.0199999996 -1156195.84, -589...</td>\n <td>(-591500.1399165738, -1159344.9351000004)</td>\n <td>121.0</td>\n </tr>\n <tr>\n <th>Brno-Slatina</th>\n <td>89</td>\n <td>551295</td>\n <td>Brno-Slatina</td>\n <td>Brno-Slatina</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551295</td>\n <td>Brno-Slatina</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-592953.302418</td>\n <td>-1.163336e+06</td>\n <td>12221.935650</td>\n <td>5.829742e+06</td>\n <td>POLYGON ((-593091.3500000015 -1161596.96999999...</td>\n <td>(-592977.0980891805, -1163369.8249999993)</td>\n <td>133.0</td>\n </tr>\n <tr>\n <th>Brno-Tuřany</th>\n <td>90</td>\n <td>551309</td>\n <td>Brno-Tuřany</td>\n <td>Brno-Tuřany</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551309</td>\n <td>Brno-Tuřany</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-594104.817780</td>\n <td>-1.166296e+06</td>\n <td>21357.605905</td>\n <td>1.784122e+07</td>\n <td>POLYGON ((-595983.120000001 -1163916.359999999...</td>\n <td>(-594598.9249158911, -1166357.4499999993)</td>\n <td>14.0</td>\n </tr>\n <tr>\n <th>Brno-Chrlice</th>\n <td>91</td>\n <td>551317</td>\n <td>Brno-Chrlice</td>\n <td>Brno-Chrlice</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551317</td>\n <td>Brno-Chrlice</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-595592.270326</td>\n <td>-1.168729e+06</td>\n <td>16026.030228</td>\n <td>9.492907e+06</td>\n <td>POLYGON ((-596347.5100000016 -1166738.84, -596...</td>\n <td>(-595516.1788480217, -1168558.8000000007)</td>\n <td>15.0</td>\n </tr>\n <tr>\n <th>Brno-Bosonohy</th>\n <td>92</td>\n <td>551325</td>\n <td>Brno-Bosonohy</td>\n <td>Brno-Bosonohy</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551325</td>\n <td>Brno-Bosonohy</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-604417.861598</td>\n <td>-1.161660e+06</td>\n <td>13888.641269</td>\n <td>7.147886e+06</td>\n <td>POLYGON ((-605152.1799999997 -1160070.39009999...</td>\n <td>(-604119.7012236556, -1161715.2551000006)</td>\n <td>19.0</td>\n </tr>\n <tr>\n <th>Brno-Žebětín</th>\n <td>93</td>\n <td>551368</td>\n <td>Brno-Žebětín</td>\n <td>Brno-Žebětín</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551368</td>\n <td>Brno-Žebětín</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-606460.760666</td>\n <td>-1.158772e+06</td>\n <td>23206.733123</td>\n <td>1.359924e+07</td>\n <td>POLYGON ((-606417.8599999994 -1156672.88010000...</td>\n <td>(-606467.2769532457, -1158575.460000001)</td>\n <td>20.0</td>\n </tr>\n <tr>\n <th>Brno-Ivanovice</th>\n <td>94</td>\n <td>551376</td>\n <td>Brno-Ivanovice</td>\n <td>Brno-Ivanovice</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551376</td>\n <td>Brno-Ivanovice</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-600046.704618</td>\n <td>-1.152829e+06</td>\n <td>10054.771687</td>\n <td>2.446103e+06</td>\n <td>POLYGON ((-599444.4100000001 -1151725.62000000...</td>\n <td>(-600026.629237962, -1152798.205050001)</td>\n <td>12.0</td>\n </tr>\n <tr>\n <th>Brno-Jehnice</th>\n <td>95</td>\n <td>551406</td>\n <td>Brno-Jehnice</td>\n <td>Brno-Jehnice</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551406</td>\n <td>Brno-Jehnice</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-598347.215759</td>\n <td>-1.151818e+06</td>\n <td>12194.556985</td>\n <td>4.072894e+06</td>\n <td>POLYGON ((-597563.6400000006 -1150055.85999999...</td>\n <td>(-598684.7447784491, -1151578.1449999996)</td>\n <td>14.0</td>\n </tr>\n <tr>\n <th>Brno-Ořešín</th>\n <td>96</td>\n <td>551422</td>\n <td>Brno-Ořešín</td>\n <td>Brno-Ořešín</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551422</td>\n <td>Brno-Ořešín</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-596850.057372</td>\n <td>-1.151235e+06</td>\n <td>8671.946618</td>\n <td>3.064507e+06</td>\n <td>POLYGON ((-596615.2800000012 -1150145.77, -596...</td>\n <td>(-596828.6547211574, -1151328.875)</td>\n <td>5.0</td>\n </tr>\n <tr>\n <th>Brno-Útěchov</th>\n <td>97</td>\n <td>551431</td>\n <td>Brno-Útěchov</td>\n <td>Brno-Útěchov</td>\n <td>582786</td>\n <td>Brno</td>\n <td>551431</td>\n <td>Brno-Útěchov</td>\n <td>40711</td>\n <td>CZ0642</td>\n <td>...</td>\n <td>3115</td>\n <td>CZ064</td>\n <td>Jihomoravský kraj</td>\n <td>-595171.280371</td>\n <td>-1.150839e+06</td>\n <td>6203.556569</td>\n <td>1.178099e+06</td>\n <td>POLYGON ((-594745.6900000013 -1150536.32, -594...</td>\n <td>(-595180.3209008181, -1150669.1050000004)</td>\n <td>7.0</td>\n </tr>\n </tbody>\n</table>\n<p>29 rows × 21 columns</p>\n</div>\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n<div class=\"cell border-box-sizing text_cell rendered\"><div class=\"prompt input_prompt\">\n</div><div class=\"inner_cell\">\n<div class=\"text_cell_render border-box-sizing rendered_html\">\n<p>Nakonec můžeme vykreslit graf, ve kterém budeme definovat barvy pomocí hodnot ve sloupci <code>pocet</code>. Taky si přidáme legendu.</p>\n</div>\n</div>\n</div>\n<div class=\"cell border-box-sizing code_cell rendered\">\n<div class=\"input\">\n<div class=\"prompt input_prompt\">In [77]:</div>\n<div class=\"inner_cell\">\n <div class=\"input_area\">\n<div class=\" highlight hl-ipython3\"><pre><span></span><span class=\"kn\">from</span> <span class=\"nn\">matplotlib</span> <span class=\"k\">import</span> <span class=\"n\">pyplot</span>\n<span class=\"n\">brno_s_poruchami</span><span class=\"o\">.</span><span class=\"n\">plot</span><span class=\"p\">(</span><span class=\"n\">figsize</span><span class=\"o\">=</span><span class=\"p\">(</span><span class=\"mi\">10</span><span class=\"p\">,</span><span class=\"mi\">10</span><span class=\"p\">),</span> <span class=\"n\">column</span><span class=\"o\">=</span><span class=\"s2\">"pocet"</span><span class=\"p\">,</span> <span class=\"n\">legend</span><span class=\"o\">=</span><span class=\"kc\">True</span><span class=\"p\">)</span>\n<span class=\"k\">for</span> <span class=\"n\">idx</span><span class=\"p\">,</span> <span class=\"n\">radek</span> <span class=\"ow\">in</span> <span class=\"n\">brno_s_poruchami</span><span class=\"o\">.</span><span class=\"n\">iterrows</span><span class=\"p\">():</span>\n <span class=\"n\">pyplot</span><span class=\"o\">.</span><span class=\"n\">annotate</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"o\">=</span><span class=\"n\">radek</span><span class=\"p\">[</span><span class=\"s2\">"NAZ_MOaMC"</span><span class=\"p\">],</span> <span class=\"n\">xy</span><span class=\"o\">=</span><span class=\"n\">radek</span><span class=\"p\">[</span><span class=\"s2\">"coords"</span><span class=\"p\">],</span> <span class=\"n\">horizontalalignment</span><span class=\"o\">=</span><span class=\"s2\">"center"</span><span class=\"p\">)</span>\n</pre></div>\n\n </div>\n</div>\n</div>\n\n<div class=\"output_wrapper\">\n<div class=\"output\">\n\n\n<div class=\"output_area\">\n\n <div class=\"prompt\"></div>\n\n\n\n\n<div class=\"output_png output_subarea \">\n<img src=\"%0A\">\n</div>\n\n</div>\n\n</div>\n</div>\n\n</div>\n \n\n\n\n\n " } } }